
1 July 1999 Delphi Informant

July 1999, Volume 5, Number 7

Cover Art By: Darryl Dennis

ON THE COVER
5 Easy Access — Bill Todd
It’s a simple fact that Microsoft Access dominates the desktop database
market. Fortunately, Delphi 4 and Borland Database Engine version 5
handle Access with ease. Mr Todd demonstrates working with Access
data, including employing AutoNumber fields, various concurrency
issues, and more.

FEATURES
10 Sound + Vision
NetSound — Jani Järvinen
Mr Järvinen shares a simple two-program Delphi solution for streaming
audio over a TCP/IP network, and explains how to use the low-level
audio functions provided by the Windows API.

15 OP Tech
When Every Bit Counts — Steve Griffiths
Need a compact method for storing multiple numbers in a single inte-
ger? Mr Griffiths explains bit shifting techniques, and describes a data-
aware CheckListBox that implements the bitshift mechanism.

19 On the ’Net
XML from Delphi — Ron Loewy
XML isn’t HTML! That pronouncement out of the way, Mr Loewy goes
on to describe XML and present a primer to XML document parsing from
Delphi applications.

24 On Language
object vs. class — Aleksandr Gofen
Mr Gofen recommends fewer pointers, less double-thinking, and offers
the “old fashioned” oobbjjeecctt type (as opposed to the ccllaassss type) as the
mechanism for simplifying your Object Pascal life.

REVIEWS
28 dtSearch

Product Review by Warren Rachele

32 Ready-to-Run Delphi 3.0 Algorithms
Book Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
4 Newsline
34 File | New by Alan C. Moore, Ph.D.

2 July 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

SkyLine Tools Announces DICOM Suite for Delphi

SkyLine Tools Imaging

announced the release of the
DICOM Suite for Delphi, which
enables developers to create
medical imaging applications in
Windows 95/98/NT that sup-
port the DICOM format. The
DICOM Suite ships as an “add-
on” to the ImageLib Corporate
Suite, and includes an end-user
DICOM application with
Delphi source code. The suite
also includes read and write
functionality.
Xenomorph Announces COM

Cocolsoft Announces Cocols
The DICOM Suite offers com-
plete support for Version 3 of
the DICOM format, and will
read/write/display Version 3
DICOM images and anima-
tions.

Some of the features of the
DICOM Suite include palette
management for highlighting
hard-to-find areas; support for
study and patient information;
real-time Windows leveling;
DICOM Write, which can be
used for Web publishing; ability
 Interface for Xenomorph

oft Delphi Grammar
to create animated GIFs or
Multipage TIFFs from DICOM
images; ability to swap, append,
add, and delete frames; support
for 24-bit grayscale lossless com-
pression; Edge Detection for
outlining sections of images;
printing functions; and more.

SkyLine Tools Imaging
Price: US$1,499 (read/write);
US$899 (read only).
Phone: (800) 404-3832
Web Site: http://www.imagelib.com
System

Xenomorph Software Ltd.

announced the release of a new
COM interface for Xenomorph
System, the company’s data man-
agement and analysis system for
risk management, trading, and
software application development.

The Xenomorph COM inter-
face contains a new object
implementation of the
Xenomorph System that covers
all aspects of multiple data feed
access right through to volatility
calculations and database struc-
ture manipulation.

The new object implementa-
tion is complementary to the
Xenomorph System functional
interfaces to C and Microsoft
Excel. The existing functional
interface to Visual Basic is also
contained in the Xenomorph
System COM library, removing
the need for a separate .BAS file
for VB, or awkward VB add-in
reference paths in Excel.
The COM interface allows sys-

tem designers and implementers
access across many different
development environments,
including Delphi, Visual C++,
VB and VBA, and Java. Cross-
platform support for the inter-
face is available on many operat-
ing systems, such as OpenVMS,
64-bit DIGITAL UNIX, Sun
Solaris, and Windows NT.

Xenomorph Software Ltd.
Price: Current users of Xenomorph System
automatically receive upgrade.
Phone: +44 (0)181 971 0080
Web Site: http://www.xenomorph.com
Cocolsoft Computer
Solutions announced Cocolsoft
Delphi Grammar, grammar
designed to work with pro-
gram code written in Object
Pascal for the Delphi compiler
sold by Inprise Corp.
Cocolsoft Delphi Grammar is

one of the grammars included in
the latest release of Cogencee,
Cocolsoft’s compiler generator
for Delphi.

Some uses of the grammar
are JavaDoc-like documenta-
tion for Delphi code, code
metrics, pretty printer, or code
formatting.

Cocolsoft Computer Solutions
Price: Included in Cogencee; Cogencee is
available for Delphi 1 (16-bit) and Delphi 4
(32-bit) for US$300 (Standard), and
US$500 (Professional).
E-Mail: info@cocolsoft.com.au
Web Site: http://www.cocolsoft.com.au/
Dgram/dgramh.htm
Dart Announces ASP Support
in MailBuilder

Dart Communications
announced MailBuilder Internet
Mail Toolkit now supports the
creation of e-mail applications
using Active Server Pages (ASP).

MailBuilder and ASP make it eas-
ier to create server-side e-mail

applications that users can
access using any Web browser.

MailBuilder now includes two
samples in the form of Microsoft
Visual InterDev projects: one for
sending e-mail, and the other for
“popping” e-mail. The Send Mail

sample includes facilities to upload
and manage attachments using

Dart’s Mime control. Likewise, the
POP3 sample includes facilities to
download attachments once they

are decoded.
MailBuilder’s ready-to-use

SMTP, POP3, and IMAP4 drop-in
forms allow developers to instant-
ly create useful e-mail applica-
tions. Sample applications with

Visual Basic source are also
included for a list server, an auto
response server, a questionnaire
editor and vote counter, a mail
filter that sorts messages, a sort

and forward sample that redirects
mail, a bulk mailer, and more.
For more information, call Dart
at (315) 431-1024, or visit the

Dart Web site at
http://www.dart.com.

http://www.imagelib.com
http://www.xenomorph.com
http://www.cocolsoft.com.au/Dgram/dgramh.htm
http://www.cocolsoft.com.au/Dgram/dgramh.htm
http://www.dart.com

3 July 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Active+ Announces ServiceKeeper for Windows NT

Active+ Software announced

the release of ServiceKeeper, a
Windows NT Server system util-
ity that performs services sched-
uling and monitoring, and helps
prevent crashes.

ServiceKeeper provides service
failure detection, failed service
rescue, error reporting, and inte-
grated administration through
Service+ and MMC SnapIn.

Service failures are detected by
ModelMaker Releases Mod

Innoview Announces MULT

Idyle Launches DirectUpda
watching for specific events in the
event log, looking up Windows
NT counters, and checking
TCP/IP protocols — HTTP
(including protocol-specific errors
4xx and 5xx), SMTP, FTP, TEL-
NET, PING, etc. ServiceKeeper’s
service scheduler stops services at
night for backups, restricting
access at specified time, and
restarts services to clean up
resources (memory, handles, etc.).
elMaker 5 for Delphi

ILIZER Supports Euro

te 1.0
Custom error detection is also
possible by checking the exit code
of a custom program.

ServiceKeeper runs on Intel
and Alpha platforms and is
Unicode aware.

Active+ Software
Price: US$195 (up to two monitored
servers); US$3,995 (site license, unlimited).
Fax: 33 (4) 68054773
Web Site: http://www.activeplus.com
ModelMaker announced the
release of ModelMaker 5 for
Delphi, a two-way productivity
and UML-style CASE tool for
generating and reverse-engineer-
ing native Delphi code.

ModelMaker supports draw-
ing UML-style class diagrams,
and, from that perspective,
looks much like a traditional
CASE tool. Its active modeling
engine stores and maintains all
relationships between classes
and their members. All changes
made (in diagrams or code) are
reflected throughout the code
and diagrams; code generation
is instant. Creating and editing
classes and members, overriding
methods or properties, and
other tasks are handled by
selecting and clicking.
Multiple-filtered views of the
model (class tree, units, dia-
grams, members, etc.) give
overview and restructuring
capabilities. Existing code can
be imported and visualized
using a visualization wizard or
simple drag-and-drop.

Documentation features
include in-source comment
generation, reverse-engineering
of source comments, and gen-
eration of help files from doc-
umentation. Version 5 adds
COM interface support, Code
Templates, and an Open Tools
API that allows you to create
your own wizards.

ModelMaker
Price: US$199 for a single-user license.
E-Mail: info@modelmaker.demon.nl
Web Site: http://www.modelmaker.
demon.nl
Innoview Data Technologies
Ltd. announced its MULTI-
LIZER product now supports
the euro currency, recently
adopted by 11 of the countries
in the European Economic and
Monetary Union, including
Austria, Belgium, Finland,
France, Germany, Ireland,
Italy, Luxembourg, the
Netherlands, Portugal, and
Spain.
The newest build (26.2.1999) of

MULTILIZER adds support for
the changes brought by EMU.

MULTILIZER is the RAD
way to produce multi-lingual
and localized software for the
global market place. MULTI-
LIZER can be used in Delphi 1
through 4, C++Builder 1, 3,
and 4, and JBuilder 1 and 2.

Innoview Data Technologies Ltd.
Price: US$290 (VCL Edition Standard,
without source code).
Phone: +358-9-4762 0550
Web Site: http://www.multilizer.com
Idyle Software announced
the release of DirectUpdate
1.0, a software development
kit that allows any computer
product developer to integrate
professional software update
functionality.

Once a product is
DirectUpdate-enabled, its user
will be able to check for new
versions, download, unzip, and
install the product.
DirectUpdate is designed to
work on Windows 95/98 and
NT 4. To integrate
DirectUpdate into a computer
product, a developer needs only
to add a small EXE (58KB) and
a DUF file (25KB), which are
distributed with the product.
The DUF file contains compa-
ny and product names and
logos, and the location of the
DUVIR file on the internet.
The DUVIR file is created by
the developer for each new
release, and is uploaded to a
Web server. It contains the lat-
est version information and
download locations.

Idyle Software
Price: Free
Web Site: http://www.directupdate.com
Primoz Gabrijelcic
Announces GpProfile 1.2

Primoz Gabrijelcic announced the
availability of GpProfile 1.2, his

profiler for Delphi. The new version
can parse sources that contain

conditional compilation directives
($IFDEF/$IFNDEF, $ELSE, $ENDIF,

$DEFINE, $UNDEF).
GpProfile 1.2 features include

source instrumenting profiling for
Delphi 2, 3, and 4; compatibility
with Windows 95/98 and NT 4
and 5; multi-threaded program
support; a built-in call hierarchy
browser; the ability to instrument

procedures written in built-in
assembler; integrated source pre-
view; an integrated result viewer;

an API for profiling control; condi-
tional API execution with meta-

comments; and a layout manager.
GpProfile 1.2 also offers sever-
al bug fixes, including fixes for

TGpArrowListView,
Instrument&Run, and Run.

GpProfile 1.2 is available, free
of charge, at

http://members.xoom.com/
primozg/gpprofile.

http://members.xoom.com/primozg/gpprofile
http://members.xoom.com/primozg/gpprofile
http://www.modelmaker.demon.nl
http://www.modelmaker.demon.nl
http://www.multilizer.com
http://www.directupdate.com
http://www.activeplus.com

4 July 1999 Delphi Informant

News
L I N E

Ju l y 1999

PrimeCare Uses InterBase to Reduce Healthcare Costs

Inprise Names Dale Fuller Interim President and CEO
Scotts Valley, CA — PrimeCare
Systems, Inc. offers the
PrimeCare Patient Management
System, PrimeCare on the Web,
and CodeComplier, applications
that reduce healthcare costs and
remove opportunities for error
in diagnosis. These applications
use the InterBase embedded
database, allowing physicians to
see up to 66 percent more
patients and eliminating dicta-
tion and transcription costs by
having patients respond to diag-
nostic computer questions
before seeing the doctor.

InterBase provides the database
used to store confidential records
generated by the questionnaire-
based PrimeCare Patient
Management System, and is used
internally for continual updates
to the questionnaire base with the
most recent information from the
Mount Sinai School of Medicine.

InterBase is also at the heart of
OFUSA Uses InterBase in In

Borland Announces Borland
PrimeCare on the Web, a secure
Internet version of the
PrimeCare Patient Management
System, enabling patients to
answer the questionnaires via
ternet-based System

 JBuilder 3
the Web before entering the
physician’s office.

More information on PrimeCare
systems can be found at
http://www.pcare.com.
Scotts Valley, CA — The Board
of Directors of Inprise Corp.
announced that Dale Fuller has
been named Interim President,
CEO, and a Director.

Fuller succeeds Delbert W.
Yocam, the former Chairman
and CEO, who resigned on
March 31, 1999. To address
unfounded rumors, the Board
stated that it had requested
Yocam’s resignation because of
philosophical differences regard-
ing the company’s growth strate-
gy. The Board reaffirmed its
confidence in the accuracy of
the company’s reported financial
statements.

The Board is evaluating the
potential benefits of separating
Inprise into two independent
companies as part of a compre-
hensive strategic review.
Hambrecht & Quist, an invest-
ment banking firm, has been
retained to advise the Board on
the company’s strategic alterna-
tives.

Fuller joins Inprise with over 20
years of experience in general
management, marketing, and
business development in the tech-
nology industry. In 1997, he
joined WhoWhere? Inc., one of
the leading community sites on
the Internet as President, CEO,
and a Director. At WhoWhere?,
Fuller led the expansion of
numerous domain sites, including
Angelfire.com and MailCity.com,
a free e-mail site. Fuller also
increased the company’s consumer
reach by 15 percent.

Previously, Fuller worked at
Apple Computer, most recently
as Vice President and General
Manager of the Powerbook
Business Unit. From 1994 to
1996, he was with NEC
Technologies, Inc. as Vice
President and General Manager,
Portable Computer Systems.
The Board is also conducting a

search for a new CFO and has
retained the executive search firm
Rusher Loscavio & LoPresto.
The resignation of former CFO
Kathleen M. Fisher, which was
also requested by the Board, was
announced on March 31, 1999.
Scotts Valley, CA — Office
Furniture USA, Inc. (OFUSA), a
network of office furniture manu-
facturers and dealers, features
InterBase Software Corp.’s embed-
ded database in an Internet-based
system that improves productivity
and financial growth by streamlin-
ing communication between the
company, its partners, and the
general public.

The system uses InterBase as
its primary database, responsible
for providing access and
retrieval of vital day-to-day
operations information.

InterBase enhances OFUSA’s
productivity in several areas,
including a new sales order-entry
application that prevents order-
entry errors. InterBase also
enables consumers to access a
new online “shopping cart” that
enables them to go to the Web
site, browse the catalog, and
receive a quotation and a refer-
ence to the nearest dealer.

The OFUSA solution was
developed by United Systems
Inc. and has been dubbed
“Triple-Net” because it offers
information to 1) the general
public, 2) furniture dealers,
manufacturers, and potential
franchisees, and 3) OFUSA’s
customer service representatives,
all from a single home page.

The OFUSA Web site is
located at http://www.
officefurniture-usa.com.
Scotts Valley, CA — Borland
announced Borland JBuilder 3,
a new version of its visual
development tools for Java
developers. JBuilder 3 provides
comprehensive support for the
Java 2 platform and allows
individual and corporate devel-
opers to create platform-inde-
pendent business and database
applications, distributed enter-
prise applications, and JavaBean
components. At the time of this
writing, JBuilder 3 was planned
to eventually be available on
Microsoft Windows, Solaris,
and Linux.

JBuilder 3’s open environment
supports JDK 1.1.x, JFC/Swing
components, JavaBeans,
Enterprise JavaBeans, CORBA,
RMI, JDBC, and all major cor-
porate database servers.

JBuilder 3 is available in
Enterprise, Professional, and
Standard versions. JBuilder 3
Enterprise has an estimated
street price (ESP) of US$2,499
for new users; JBuilder 3
Professional has an ESP of
US$799; and JBuilder 3
Standard has an ESP of
US$99.95.

For more information, visit
the Borland Web site at
http://www.borland.com.

http://www.pcare.com
http://www.borland.com
http://www.officefurniture-usa.com
http://www.officefurniture-usa.com

5 July 1999 Delphi Informant

On the Cover
Delphi 4 / Access / BDE Administrator / ODBC

By Bill Todd
Easy Access
Using the Leading Desktop Database

Delphi 4 provides two ways to access data in Microsoft Access databases: the native
BDE Access driver and ODBC.
Using the native BDE driver is as simple as creat-
ing an alias to your Access database. Begin by
starting the BDE Administrator. Click the
Databases tab if it’s not already selected, then
right-click on Databases in the tree view and
choose New, or press CN to display the New
Database Alias dialog box shown in Figure 1.

Choose MSACCESS from the drop-down list to dis-
play the new Access alias, as shown in Figure 2.
Begin by giving the new alias a name. Next, enter
the path to, and name of, your Access database in
the DATABASE NAME field. If you want read-only
access to the database, choose Read Only from the
OPEN MODE drop-down list. If your Access data-
base uses user-level security, enter the path to, and
name of, the workgroup information file in the
SYSTEM DATABASE field. You can also enter a
default USER NAME if you wish.

Next, click the Configuration tab and expand the
Configuration, Drivers, and Native nodes in the tree
view (see Figure 3). Select the MSACCESS driver
and check the DLL32 setting. If you’re going to
open an Access 97 database, set this value to
IDDA3532.DLL. To work with Access 95 data-
bases, the setting should be IDDAO32.DLL.

Although the MSACCESS driver is a native BDE
driver, it cannot open an Access database directly,
because the Access file format is not published.
Instead, the driver uses Microsoft’s Data Access
Objects (DAO) to interact with the Access database.
You must have DAO version 3.5 installed to work
with an Access 97 table, and DAO 3.0 for Access
95. Installing any Microsoft Office (e.g. Word) or
developer program (e.g. Visual C++) on your system

should also
install DAO.
DAO will
remain on your
system even if
the program
that installed it
is removed.
(You’ll need to

Figure 1: The BDE
Administrator’s New
Database Alias dialog box.
consult Microsoft for licensing requirements before
distributing DAO with an application.)

To use the Access database in Delphi, create a new
application and add a data module to it using the
Data Module wizard in the Object Repository.
Add a Database component, a Table, and a
DataSource to the data module. Select the
Database component and set the AliasName prop-
erty to the alias for your Access database. Next, set
the DatabaseName property to whatever name you
want to use within this application.

If you’re not using user-level security, and you’re
not using a database password on your Access
database, set the LoginPrompt property to False.
Figure 4 shows the property settings for the
Database component used to open the sample
Northwind database that comes with Access 97. If
you don’t, Delphi will prompt you to enter a user
name and password each time you connect to the
database. Finally, set the Connected property of
the Database component to True to make sure
you can connect to the database.

To open a table in the database, select the Table
component in the data module and set its
DatabaseName property to the same value you
used for the Database component. Select the
TableName property in the Object Inspector, and
click the drop-down list button. You should see a
list of the tables in the Access database. Choose
the one you want. Next, set the Table’s Active
property to True. Now set the DataSet property of
the DataSource component to the Table.

The rest of the process is no different than any
other Delphi application. Move to the main form
and add a DBNavigator and a DBGrid compo-
nent. Select File | Use Unit from the menu, and
add the data module’s unit to the form’s uses
clause. The last step is to set the DataSource prop-
erty of the grid and navigator to the DataSource
component in the data module. When you set the
DataSource property of the grid, you should see
the data from the Access table.

Figure 3: MSACCESS driver settings.

Figure 2: An Access alias in the BDE Administrator.

On the Cover
The sample application in the Connect subdirectory in the code for
this article (available for download; see end of this article for details)
shows the final product of these steps. Of course, you can also use
Query components with Access tables.

Changes Made by Another User
While the native Access driver is easy to use, it has some unfortu-
nate problems. The worst is that it does not detect changes made by
other users. To see this, do the following:

1) Create a test application in Delphi, as previously described, that
displays the employee table in the Northwind database.

2) Start Access 97 and view the same table.
3) In the Delphi application, change the last name of Nancy

Davolio to Davoliox, but don’t post the record.
4) In Access, change the name to Davolioy and move off the

record to ensure that it’s posted.
5) Return to your Delphi application and post the changed

record. Note that you don’t receive any warning that the
record has been changed by another user.
6 July 1999 Delphi Informant
If you follow the above steps in
reverse, that is, change the
record in Access in step 3,
Delphi in step 4, and Access in
step 5, Access does warn you
that the record was changed by
another user. The only solution
to this problem is to add code
to the Delphi application that
saves the record in the
BeforeEdit event handler. In the
BeforePost event handler, the
application must reread the
record and compare it field-by-
field to the values saved in
BeforeEdit to see if it has been
changed by another user. One
way to do this is to use the
TdgReadTableBeforeWrite com-
ponent shown in Listing One
(beginning on page 8).

The TdgReadTableBeforeWrite component provides a way to check for
changes made by another user. To use it, drop one
TdgReadTableBeforeWrite component on your data module for each
Table component, then perform the following steps:
1) Set the Table property of the TdgReadTableBeforeWrite component

to the Table component it should monitor.
2) Create a BeforeEdit event handler for the Table component. In

it, call the TdgReadTableBeforeWrite.SaveRecord method. This
copies the record you’re about to edit to a variant array.

3) Create a BeforePost event handler for the Table component. In it,
call the TdgReadTableBeforeWrite.RecordWasModified method. This
function returns False if the record hasn’t been changed, or if the
user chooses to overwrite the changes, and True if the record has
been changed and the user chooses not to overwrite the changes.

4) Call TdgReadTableBeforeWrite.Open after opening the Table.
5) Call TdgReadTableBeforeWrite.Close when you close the Table.

The project in the RecChanged directory is identical to the project
in the Connect directory except that it uses this component to
detect changes made by other users. Here’s the BeforeEdit event han-
dler for the EmployeeTable Table, which saves the record:

procedure TTestDm.EmployeeTableBeforeEdit(

DataSet: TDataSet);

begin
TestDm.EmployeeRw.SaveRecord;

end;

The following is the BeforePost event handler that aborts the post if
the record has been changed:

procedure TTestDm.EmployeeTableBeforePost(

DataSet: TDataSet);

begin
if TestDm.EmployeeRw.RecordWasModified then Abort;

end;

Figure 5 shows the error dialog box the user sees when trying to post
a change to a record that has been changed by another user. This
dialog box offers two options, to abandon his or her changes, or to
overwrite the changes made by the other user.

Figure 4: Sample Database
component properties.

7 July 1999 Delphi Informant

Figure 5: This dialog box warns that the record has been changed.

On the Cover

Figure 6: The ODBC Administrator.

Figure 7: The ODBC DSN Setup dialog box.

class procedure TAccessUtils.CreateAccessDb(

DBName: string);
var

DBEngine: Variant;

Workspace: Variant;

const
Language = ';LANGID=0x0409;CP=1252;COUNTRY=0';

Version = 32;

begin
try

{ Get a handle to the Database Engine. }
DBEngine := CreateOleObject('DAO.DBEngine.35');

{ Get a handle to the Jet Engine Workspace object. }
Workspace := DBEngine.Workspaces[0];

{ Create the database. }
Workspace.CreateDatabase(DBName, Language, Version);

except on E: EOleException do
ShowMessage('Could not create database. ' + E.Message);

end; // try
end;

Figure 8: Creating an Access table.
How It Works
The constructor for the TdgReadTableBeforeWrite
component calls the CreateShadowTable method,
which creates a Table referenced by the private
member variable FShadowTable and sets its prop-
erties to connect it to the same table as the Table
component referenced by the Table property. The
Open method opens the shadow table.

Calling the SaveRecord method from the BeforeEdit method of the table
being monitored calls CheckValidTables, which verifies that the
TableName property is set and that the Table component for the shad-
ow table exists. It then calls the shadow table’s GotoCurrent method to
position the shadow table to the record being edited, and saves the cur-
rent record in the private variant, FRec.

The call to RecordWasModified in the BeforePost event of the table being
monitored calls the shadow table’s Refresh method so any changes made
by other users will be seen. It then compares the shadow table record to
the contents of the FRec variant array. If the record and the array don’t
match, another user has changed the record, and an error dialog box is
displayed. The error dialog box offers the user the choice of overwriting
the other user’s changes, or canceling the changes the user has made.

The component’s only other method is the overridden, protected
Notification method. This method is called automatically when the
user adds or deletes components, and — in this case — sets the
Table property to nil if the Table it points to is removed.

AutoNumber Fields
Another problem encountered when using the native Access driver
is large jumps in the value assigned to an AutoNumber field when
records are inserted into a table. This happens if any of the fields in
the table have a default value set. The only work-around for this
problem is to assign default values in your Delphi program — not
in the table definition.

Using ODBC
The second way to connect to an Access database is with the Microsoft
Access ODBC driver. The first step in using the ODBC driver is to cre-
ate a data source name (DSN) using the 32-bit ODBC Administrator.
Begin by opening the ODBC applet in Control Panel (see Figure 6).
Select the User DSN page to create a DSN for the current user, or the
System DSN page to create a DSN for all users. Click the Add button,
choose Microsoft Access Driver (*.mdb), then click OK to display the Setup
dialog box (see Figure 7).

Enter a name and description, then click either the Select or
Create button, depending on whether the DSN will be connected
to an existing database, or a new one that must be created. If the
database uses Microsoft’s user-level security, click the Database

radio button in the System Database group box and use the
System Database button to select the workgroup information file
for the database.

Once the DSN has been created, using it in a Delphi application is no
different than using the native driver alias described earlier in this arti-
cle. The DSN will automatically appear in the drop-down list of alias
names for your Database component. It’s interesting to note that the
ODBC driver has exactly the same problem detecting changes made
by another user that the native driver has. If you follow the steps given
earlier in this article, you’ll see that, again, the user isn’t warned if the
record he or she is trying to post has been changed by another user.

On the Cover

class procedure TAccessUtils.CompactAccessDb(

DBName, TempDBName: string);
var

DBEngine: Variant;

begin
try

Screen.Cursor := crHourGlass;

try
{ Get a handle to the Database Engine. }
DBEngine := CreateOleObject('DAO.DBEngine.35');

{ Compact the database into a new file. }
DBEngine.CompactDatabase(DBName, TempDbName);

{ Delete the original database and
rename the new one. }

DeleteFile(DBName);

RenameFile(TempDbName, DBName);

finally
Screen.Cursor := crDefault;

end; // try
except on E: EOleException do

ShowMessage('Could not compact database. '+E.Message);

end; // try
end;

Figure 9: Compacting an Access database.

class procedure TAccessUtils.RepairAccessDb(

DBName: string);
var

DBEngine: Variant;

begin
try

Screen.Cursor := crHourGlass;

try
{ Get a handle to the Database Engine. }
DBEngine := CreateOleObject('DAO.DBEngine.35');

{ Repair the database. }
DBEngine.RepairDatabase(DBName);

finally
Screen.Cursor := crDefault;

end; // try
except on E: EOleException do

ShowMessage('Could not repair database. ' + E.Message);

end; // try
end;

Figure 10: Repairing an Access database.
Working with an Access Database
There is no direct way to create an Access database in Delphi; how-
ever, it can be done by using Automation to work directly with
DAO. The procedure in Figure 8 is implemented as a class method
of a component that also includes methods to compact and repair
Access databases (see Figures 9 and 10). The procedure starts by call-
ing CreateOleObject to create an instance of the DAO 3.5 database
engine. Next, it gets a handle to the current Workspace object from
the Workspaces collection. Finally, a call is made to the Workspace
object’s CreateDatabase method to create the new .MDB file.

Figure 9 shows the class method CompactAccessDb, which compacts
the database to defragment it and reduce wasted space. This code is
similar to the previous example except that the call to the database
engine’s CompactDatabase method creates a new database. After the
compacted database is created, the original is deleted and the new
database is renamed to the original name.

Like all desktop databases, Access databases can become corrupt if the
PC writing to the database crashes. The Jet engine includes a method
that will attempt to fix a damaged database file. Figure 10 shows how
to call the database engine’s RepairDatabase method. All these meth-
ods and the TAccessUtils object are included in the AccUtil project
that accompanies this article (see end of article for download details).
8 July 1999 Delphi Informant
Conclusion
Although the tools available in Delphi 4 for working with Access
databases have some limitations, you can write applications that take
advantage of all the features that Access databases have to offer.
With the Table and Query components to provide data access, and
the Database component for transaction control, you can work with
Access databases using the native BDE driver or ODBC. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUL\DI9907BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, co-author of four database-programming books and over 60 articles,
and a member of Team Borland, providing technical support on the Borland
Internet newsgroups. He is a frequent speaker at Borland Developer Conferences
in the US and Europe. Bill is also a nationally known trainer and has taught
Paradox and Delphi programming classes across the country and overseas. He
was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com, or (602) 802-0178.
Begin Listing One — TdgReadTableBeforeWrite
unit RBeforeW;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, DbTables;

type
EdgRBWException = class(Exception);
EdgRBWTableMissing = class(EdgRBWException);
EdgRBWShadowTableMissing = class(EdgRBWException);
TdgReadTableBeforeWrite = class(TComponent)
private

FTable: TTable;

FShadowTable: TTable;

FRec: Variant;

FRecordSaved: Boolean;

procedure CheckValidTables;

protected
procedure CreateShadowTable;

procedure Notification(AComponent: TComponent;

Operation: TOperation); override;
procedure SetTable(Value: TTable);

public
constructor Create(AOwner: TComponent); override;
procedure Close;

procedure Open;

function RecordWasModified: Boolean;

procedure SaveRecord;

published
property Table: TTable read FTable write SetTable;

end;

procedure Register;

implementation

constructor TdgReadTableBeforeWrite.Create(

AOwner: TComponent);

begin
inherited;
CreateShadowTable;

end;

On the Cover
procedure TdgReadTableBeforeWrite.Open;

{ Opens the shadow table. }
begin

if FShadowTable <> nil then
if not FShadowTable.Active then FShadowTable.Open;

end;

procedure TdgReadTableBeforeWrite.Close;

{ Closes the shadow table. }
begin

if FShadowTable <> nil then
if FShadowTable.Active then FShadowTable.Close;

end;

procedure TdgReadTableBeforeWrite.SetTable(Value: TTable);

begin
FTable := Value;

CreateShadowTable;

end;

procedure TdgReadTableBeforeWrite.CreateShadowTable;

{ Called from the constructor and the SetTable method to
create the shadow TTable. The shadow table is not created
at design time and is not created unless the Table
property is assigned. }

begin
{ Do not create the shadow table at design time. }
if csDesigning in ComponentState then Exit;

{ If the Table property is not assigned, do not create
the shadow table. }

if FTable <> nil then begin
{ If the shadow table component does not exist then

create it. }
if FShadowTable = nil then

FShadowTable := TTable.Create(Self);

{ Connect the shadow table to the same table as the
Table property. }

with FShadowTable do begin
if Active then Close;

DatabaseName := FTable.DatabaseName;
ReadOnly := True;

TableName := FTable.TableName;
end; // with

end; // if
end;

procedure TdgReadTableBeforeWrite.Notification(

AComponent: TComponent; Operation: TOperation);

begin
if Operation = opRemove then

if AComponent = Self.Table then
Self.Table := nil;

end;

procedure TdgReadTableBeforeWrite.CheckValidTables;

begin
if FTable = nil then

raise EdgRBWTableMissing.Create(

'TdgReadBeforeWrite Table is not assigned.');

if FShadowTable = nil then
raise EdgRBWShadowTableMissing.Create(

'TdgReadBeforeWrite ShadowTable is not assigned.');

end;

procedure TdgReadTableBeforeWrite.SaveRecord;

{ This method and RecordWasModified are used to determine
if another user has changed a record in a table since you
started editing it. This method is called in the table's
BeforeEdit event handler to save the record to a variant
array. RecordWasChanged is called from the table's
BeforePost event handler. It rereads the record and
compares the value of each field to the value saved in
the variant array. If the values are not identical a
warning message is displayed. }

var
I: Integer;
9 July 1999 Delphi Informant
begin
{ If either table is not assigned, raise an exception. }
CheckValidTables;

{ Open the shadow table. }
if not FShadowTable.Active then FShadowTable.Open;

{ Position the TTable you will use to see if the record
has been changed by another user to the record you
are about to edit. }

FShadowTable.GotoCurrent(FTable);

{ Size the variant array to hold all of the fields
in the record. }

if (not VarIsArray(FRec)) or
(VarArrayHighBound(FRec, 1) <>

Pred(FShadowTable.FieldCount)) then
FRec := VarArrayCreate([0,

Pred(FShadowTable.FieldCount)], varVariant);

{ Save the field values. }
for I := 0 to FShadowTable.FieldCount - 1 do

FRec[I] := FShadowTable.Fields[I].Value;

{ Flag the saved record as valid. }
FRecordSaved := True;

end;

function TdgReadTableBeforeWrite.RecordWasModified:

Boolean;

{ See the comments for SaveRecord for detailed information
about using this method. This function compares the field
values saved when you started editing the record with the
current values of the table's fields to determine if
another user has changed the record. If the record has
been changed the user is warned.

Returns:
False if the record has not been changed, or if the user
chooses to overwrite the changes, and True if the record
has been changed and the user chooses not to overwrite
the changes. }

var
I: Integer;

begin
Result := False;

{ If this is not a modified record, exit. }
if not FRecordSaved then Exit;

{ If either table is not assigned, raise an exception. }
CheckValidTables;

{ If there is no saved record, exit and return False. }
if VarIsEmpty(FRec) then Exit;

{ Refresh the shadow table so you will see changes made
by other users. }

FShadowTable.Refresh;

{ Compare the records. }
for I := VarArrayLowBound(FRec, 1) to

VarArrayHighBound(FRec, 1) do begin
if FRec[I] <> FShadowTable.Fields[I].Value then begin

Result := True;

Break;

end; // if
end; // for
{ If the record has been changed, notify the user. }
if Result = True then begin

if MessageDlg('Another user has changed this record. '+

'Do you want to save the other user''s changes? '+

'If you choose Yes you must cancel your changes.',

mtWarning, [mbYes, mbNo], 0) <> mrYes then
Result := False;

end; // if
{ Flag the saved record as invalid. }
FRecordSaved := False;

end;

procedure Register;

begin
RegisterComponents('DGI', [TdgReadTableBeforeWrite]);

end;

End Listing One

10 July 1999 Delphi Informant

Sound + Vision
Delphi 3, 4 / Intranet Audio Streaming

By Jani Järvinen

Figure 1: The
NetSound
Streaming Audio over a TCP/IP Network

Ever used RealAudio? Streaming audio, or even video over a network, are now com-
mon, but you might still wonder how they work. This article describes a simple two-

program solution for making streaming audio possible using Delphi. You’ll also learn
how to use the low-level audio functions provided by the Windows API.
By definition, streaming audio means the receiver
doesn’t have to download the whole audio file
before hearing it. Consider a modem connection
and a 300KB .WAV file. Without streaming sup-
port, the user must first download the whole file.
With streaming support, the user might only need
to download, say, 50KB, after which the audio
clip starts to play.

The program NetSound presented in this article
doesn’t do any buffering as in the previous .WAV
file example. Instead, it assumes the physical
transmission channel can transfer a minimum of
11KB of data per second, continuously. Although
this is a rather high requirement, audio compres-
sion used in commercial products is beyond the
scope of this article. Because of the transfer-rate
requirement, NetSound simply doesn’t work with
Server program.
a modem connection, or even a dual-channel
ISDN connection. You should only experiment
with it in a local intranet.

The Server
NetSound consists of two programs: Client and
Server (both are available for download; see end of
article for details). The Server plays the audio, and
Client supplies the audio data to Server. Although
the naming convention might sound strange, they
could just as well be called “Sender” and “Receiver.”

The workings of Server look simple (see Figure 1).
It has to listen only to an incoming TCP
(Transmission Control Protocol) connection and,
when a connection arrives, accept it. Then it starts
to read the data that comes in through the connec-
tion, simply feeding it to the audio hardware on
the system (remember, no compression is used).

In reality, things aren’t as simple as they seem.
The Server consists of three distinct parts: the
TCP, audio, and multi-threading code. For TCP,
the NetManage ActiveX controls are used. These
controls ship with Delphi 3 and 4. (They must
be installed for Delphi 4. Select Component |

Install Component to access the Install
Component dialog box. Browse to select
C:\Program Files\Borland\Delphi4\Ocx\Isp\isp3.pas
as the Unit file name. The Package file name

must, of course, be set to C:\Program
Files\Borland\Delphi4\Lib\dclusr40.dpk.) Audio
code uses the MultiMedia System (MMSystem)
API, and the multi-threading code uses Delphi’s
TThread class found in the Classes unit.

Connecting Using TCP
Although the NetManage ActiveX controls have
been criticized, the code for Server and Client
demonstrates how to use them. Using the TTCP

constructor TPlayerThread.Create;

begin
BufToUse := 1;

FillChar(Buf1, SizeOf(Buf1), 0);

FillChar(Buf2, SizeOf(Buf2), 0);

with WaveFormat do begin
wFormatTag := Wave_Format_PCM;

nChannels := 1;

nSamplesPerSec := SampleRate;

nBlockAlign := 1;

nAvgBytesPerSec := nSamplesPerSec*nBlockAlign;

wBitsPerSample := 8;

cbSize := 0;

end;
WaveOutOpen(@WaveOut, Wave_Mapper, @WaveFormat,

Integer(@MyWaveProc), hInstance, Callback_Function);

FillChar(WaveHeader1, SizeOf(TWaveHdr), 0);

FillChar(WaveHeader2, SizeOf(TWaveHdr), 0);

with WaveHeader1 do begin
lpData := Buf1;

dwBufferLength := PlayBufferSize;

dwLoops := 1;

end;
with WaveHeader2 do begin

lpData := Buf2;

dwBufferLength := PlayBufferSize;

dwLoops := 1;

end;
FreeOnTerminate := True;

Inherited Create(False);

end;

Figure 2: Getting ready for the WaveOutWrite call.

Sound + Vision
control found on the Internet page of the Component palette is
easy. The code simply calls the Listen method and waits for the
ConnectionRequest event. In the event handler, a new instance of the
TTCP class is created; it will handle the newly opened connection.
Also, note how an event handler for the DataArrival event is set.

Like it or not, the NetManage TTCP component requires several
tricks to operate correctly. For example, calling the Listen method
should put the component in the listening state for new connec-
tions. However, if the State property isn’t queried before doing this,
connections are simply refused.

The DataArrival event is the most important — and the most diffi-
cult — event to handle. It’s shown in Listing One (beginning on
page 13). This event handler reads the data from the TCP connec-
tion into an OleVariant, then stores the raw binary data in either of
the two output buffers. The threaded TPlayerThread class then plays
these buffers one at a time, using the default audio output device set
up using Windows Control Panel.

The TPlayerThread Class
As the class name tells, TPlayerThread is a class that efficiently cre-
ates a new thread to Server. Though it’s not mandatory from a tech-
nical standpoint, adding a new thread to Server is logical. The main
thread handles the user interface and the TCP communication, and
the player thread handles the audio playing.

Upon initialization, the constructor prepares headers and opens a
handle to the default audio output device. NetSound is “hard-
coded” to use monaural (single channel) eight-bit audio with a sam-
ple rate of 11,025 kHz resulting in almost an 11KB data transfer
requirement per second. Although the quality of audio with these
settings is by no means “high fidelity,” it helps keep the transmission
rate low. In contrast, sending CD-quality (16-bit stereo, 44,100
kHz) audio would require a throughput of 172KB per second.

A descendant of the TThread class does the actual work in the overrid-
den Execute method, shown in Listing Two (on page 14). The Player
simply makes sure that one audio buffer is always playing, and the
other buffer is in the audio driver’s queue, waiting to be played.

This two-buffer solution calls for more description. When the buffer
has no more audio data to play, it has to be restarted from the
beginning if only a single buffer is used. This will only take a few
milliseconds, but you will still hear a small “glitch.” The solution to
this problem is to use two buffers. One buffer is always playing, and
the audio driver can immediately proceed to the next buffer as soon
as the other one has finished playing. The driver is optimized to do
this so quickly that distorting sounds can’t be heard.

How does the thread know when it’s time to change the buffer? The
multimedia functions call our callback procedure, which sets a vari-
able named “Playing” equal to False. The thread then waits in a repeat
loop until the value of the variable becomes False and then proceeds.
In NetSound, the default buffer length is two seconds, but this is easy
to change. Note that “synchronization” situations would be best han-
dled using Win32 events; a simple variable will do just fine here.

Accessing Low-level Wave Output Devices
In Windows 95, 98, or NT, multimedia-related services can be
found from the WINMM.DLL library. In Delphi, the RTL unit
named MMSystem is the key. In the NetSound project, all func-
tions used from this unit happen to be prefixed with the word
11 July 1999 Delphi Informant
“wave.” For example, to open an output device, the
WaveOutOpen function would be called; to open an input
device, WaveInOpen would be called. This is a logical naming
convention.

To play audio, the first thing is to open a handle to the output device
we want (just as a file must be opened before it can be accessed). For
output, it’s really not important which device is the best (the user’s
computer might have multiple sound devices installed). Instead,
NetSound lets Windows choose the device it prefers. The only thing
needed, then, is the support for 11,025 kHz mono sound.

Playing a buffer of audio is done using the WaveOutWrite func-
tion. The format of the buffer used in NetSound is plain and
simple PCM (Pulse Code Modulated), which is raw, uncom-
pressed data. Of course, NetSound could use A-law compression.
However, that would require additional support from the audio
hardware.

Before getting a buffer playing with WaveOutWrite, a few things
need to be done (see Figure 2). First, a header structure needs to
be set up. This is easy: The header describes the location of the
buffer storing the actual audio data, as well as how many times it
should be looped, among other things. After the header has been
set up, the audio driver is instructed to stand by for data. This is
done with the WaveOutPrepareHeader function (see the Execute
method in Listing Two).

After header preparation, the buffer is ready for playing. After it has
finished playing, the header must be unprepared. You guessed it; the
function name is WaveOutUnprepareHeader. It will free the resources
associated with the header.

With the header preparation and un-preparation requirements,
audio playing is actually a repetition of the three calls: prepare,

Sound + Vision

Figure 3: The Client program.

procedure TNetSoundClientForm.PlayFileClick(

Sender: TObject);

var
F : File;

I : Integer;

V : Variant;

P : Pointer;

begin
AssignFile(F, FileName.Text);

Reset(F, 1);

I := FileSize(F);

ProgressBar.Max := I;

ProgressBar.Position := 0;

V := varArrayCreate([0, I-1], varByte);

P := varArrayLock(V);

BlockRead(F, P^, I);

varArrayUnlock(V);

TCPConnection.SendData(V);

CloseFile(F);

end;

Figure 4: The Client code for sending a .WAV file through
the network.

constructor TRecorderThread.Create(DeviceID: Integer);

begin
BufToUse := 1;

FillChar(Buf1, SizeOf(Buf1), 0);

FillChar(Buf2, SizeOf(Buf2), 0);

with WaveFormat do begin
wFormatTag := Wave_Format_PCM;

nChannels := 1;

nSamplesPerSec := SampleRate;

nBlockAlign := 1;

nAvgBytesPerSec := nSamplesPerSec*nBlockAlign;

wBitsPerSample := 8;

cbSize := 0;

end;
WaveInOpen(@WaveIn, DeviceID, @WaveFormat,

Integer(@MyWaveProc), hInstance, Callback_Function);

FillChar(WaveHeader1, SizeOf(TWaveHdr), 0);

FillChar(WaveHeader2, SizeOf(TWaveHdr), 0);

with WaveHeader1 do begin
lpData := Buf1;

dwBufferLength := PlayBufferSize;

dwLoops := 1;

end;
with WaveHeader2 do begin

lpData := Buf2;

dwBufferLength := PlayBufferSize;

dwLoops := 1;

end;
FreeOnTerminate := True;

Inherited Create(False);

end;

Figure 5: Initializing the TRecorderThread.
write, and unprepare. Only three other functions are used for out-
put — one for opening the device, one for resetting the device after
play, and one for closing the device. The routines are WaveOutOpen,
WaveOutReset, and WaveOutClose, respectively.

The Client
The other program in the NetSound project is Client (see Figure 3).
This program can either send a .WAV file through the network to
Server, or it can record data from any MMSystem-compatible audio
recorder, and send that data to Server. Either way, there is no differ-
ence as long as Server is considered. However, from Client’s point of
view, things are very different.

The easiest thing for Client is, of course, to send a .WAV file from disk
to Server. However, before sending anything, Client needs a TCP con-
nection to Server. This is again carried out using the NetManage TTCP
component, just like in Server. There is a difference between using the
TTCP component in Server and Client, however. In Client’s case, the
methods used are Connect, SendData, and Close (to disconnect).

When the user chooses to send a file, he or she clicks the Browse

button to browse for a .WAV file (using the TOpenDialog compo-
nent). Then, the user clicks the Play button, and several things will
happen (see Figure 4).

First, the file selected will be opened as an untyped file. Next, a vari-
ant array of bytes is allocated to match the size of the file. Because
the TTCP component works with variants, these are used even
though they are slow compared to normal Object Pascal arrays.

Variant arrays are created with the VarArrayCreate call. As the code
uses the BlockRead procedure to read the .WAV file data in one (big)
chunk, the memory associated with the variant needs to be locked.
This is done by calling the VarArrayLock function. After the BlockRead
call, the variant array is unlocked using the VarArrayUnlock call. After
this, the whole file is in the variant array and can be sent through the
TCP connection using only a single SendData method call.

Note that it’s the user’s responsibility to select a valid .WAV file.
Actually, any file, such as a Word document or an executable, can be
sent, but the resulting sound is — well — experimental. The format of
the .WAV file is also important. Selecting a stereo, a 16-bit, or a com-
12 July 1999 Delphi Informant
pressed file, or a file with a sample rate different than 11,025 kHz, will
result in garbled sound. Also, all .WAV files have headers. This will
make the very beginning of the audio sound somewhat distorted, but
it’s beyond the scope of this article to examine the .WAV file format.

Recording Audio
The most interesting feature in Client is the ability to record waveform
audio. The big picture is the same: One thread handles the UI, and the
other thread handles the recording. This time, the recording thread is
handled by the TRecorderThread class. For recording, a repetition of three
function calls is needed, just as playing audio in the TPlayerThread.

Compared to the player, many things are different. For instance,
the user selects the input device. In the UI, a combobox is filled
with a list of device names suitable for recording. Such a list is gen-

Sound + Vision

procedure TRecorderThread.SendBuffer;

var
V : OLEVariant;

P : Pointer;

begin
with NetSoundClientForm do begin

V := varArrayCreate([0, SizeOf(TAudioBuffer)-1],

varByte);

P := varArrayLock(V);

Move(SyncBuf^, P^, SizeOf(TAudioBuffer));

varArrayUnlock(V);

TCPConnection.SendData(V);

Log(nil, 'Thread.Record SendBuf' +
IntToStr(Integer(SyncBufNum)) + ' (' +

IntToStr(SizeOf(TAudioBuffer)) + ' bytes)');

Application.ProcessMessages;

end;
end;

Figure 6: The SendBuffer method.
erated by calling the WaveInGetDevCaps function. It expects a
device identifier as a parameter and returns a structure full of infor-
mation about the device in question. The code only checks to see if
the device can record eight-bit mono sound with the sample rate
used everywhere in NetSound.

When the user selects a device from the list and clicks the Record

button, an instance of the TRecorderThread is created, and, in effect,
the recorder thread starts to run. Initialization does roughly the
same things as the TPlayerThread initialization, i.e. it opens a handle
to an input device, and prepares two headers for use by the Execute
method (see Figure 5).

The Execute method starts the recording operation by calling the
WaveInStart function, shown in Listing Three (on page 14). This
makes recording audio possible. As no input buffers have been set
up, the audio is simply discarded (recorded to “void”). To add a
buffer, the WaveInAddBuffer function is called, surrounded by the
WaveInPrepareHeader and WaveInUnprepareHeader calls. Given this,
the WaveInAddBuffer can be considered equal to the WaveOutWrite
call. After the user chooses to terminate the recording, the
WaveInStop function gets called. This will stop the recording. After
this, the device handle is freed.

Although these calls are sufficient to record audio, Client still needs
to send the recorded data to Server. This is done by calling the TTCP
component’s SendData method in a synchronized procedure named
SendBuffer (see Figure 6). Data is simply sent whenever a buffer is
full of audio data, but before the buffer gets re-used.

Note that, because synchronization is used, the SendBuffer method is
always called in the context of the UI (main) thread, not the
recorder thread. Synchronization needs only to be used because, oth-
erwise, the TTCP component throws an exception.

A Test Drive
To test the two NetSound applications, you need two computers,
connected using a LAN, with TCP/IP as one of the transport proto-
cols. Also, both computers must have a sound card. Note that there
aren’t many error checks to make sure the WaveXXXOpen calls suc-
ceed. And, because the NetSound applications aren’t end-user pro-
grams, but programmers’ toys, things need to be done in a certain
order. So don’t try to record audio without a connection.

To have your personal test drive, connect a microphone to the com-
puter running Client. Place your radio receiver’s speaker next to the
13 July 1999 Delphi Informant
microphone, and tune in to your favorite station. Make sure the vol-
ume is high enough on the radio and the microphone.

On the computer running Server, make sure the speakers are set to
medium volume. Fire up Server, and click Play. Now return to
Client, type in the host name (or IP address) of the Server comput-
er, and click Connect. After you see the “Connected” message, click
the Start button. Recording now starts.

In a few seconds, you should hear your radio station on your Server.
Note that the audio is always about four to five seconds late. This is
a result of buffer misalignments between the two computers, and
the fact that the audio buffer is always recorded well before it’s sent.

Conclusion
By now, you should be able to understand at least something about
how NetSound code works. Of course, some simple things are left
out, but, by looking at the code and reading the comments on the
actual source code files, you should be able to work things out.

As for improvements, there are many things you could do better.
For example, you could combine these two programs, and give two
people the ability to communicate with each other (full-duplex
operation). Or, you could add support for multiple users and mix
the audio channels on the server side. The possibilities are almost
endless, so please use your imaginations! ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUL\DI9907JJ.

Jani Järvinen does contract programming using Delphi, concentrating on Windows
NT and Internet solutions.
Begin Listing One —
TNetSoundServerForm.TCPDataArrival
procedure TNetSoundServerForm.TCPDataArrival(

Sender: TObject; bytesTotal: Integer);

var
Dummy : OleVariant;

I, J, K : Integer;

begin
Log(Sender, 'Arrival of data, ' + IntToStr(

(Sender as TTCP).BytesReceived) + ' bytes in buffer.');

if (BytesTotal < PlayBufferSize) then
(Sender as TTCP).GetData(Dummy, varArray + varByte, 0)

else begin
if not Receiving then begin

Receiving := True;

try
I := BytesTotal;

J := BufToUse;

repeat
Log(Sender,'Reading bytes, ' + IntToStr(I) +

' bytes left.');

Dummy := Unassigned;

(Sender as TTCP).GetData(

Dummy, varByte+varArray, PlayBufferSize);

repeat
Application.ProcessMessages;

until ((BufToUse<>J) or PlayerThread.Terminated);

if PlayerThread.Terminated then
Exit;

with TvarArray(

Sound + Vision
TvarData(Dummy).VUnknown^) do begin
K := Bounds[0].ElementCount;

if (BufToUse = 1) then
Move(Data^,Buf1,K)

else
Move(Data^,Buf2,K);

end;
Log(Sender,'Wrote to Buf' + IntToStr(BufToUse) +

' ' + IntToStr(K) + ' bytes.');

J := BufToUse;

Dec(I,PlayBufferSize);

if (I < PlayBufferSize) then begin
{ Check if new data arrived while we were

processing old data. }
I := (Sender as TTCP).BytesReceived;

if (I > PlayBufferSize) then
Log(Sender,

'New data arrived while processing, now ' +

IntToStr(I) + ' bytes left.');

end;
until (I < PlayBufferSize);

finally
Receiving := False

end;
Log(Sender,IntToStr((Sender as TTCP).BytesReceived) +

' bytes still left.');

end;
end;

end;

End Listing One
Begin Listing Two — TPlayerThread.Execute
procedure TPlayerThread.Execute;

begin
WaveOutPrepareHeader(WaveOut, @WaveHeader1,

SizeOf(TWaveHdr));

WaveOutWrite(WaveOut, @WaveHeader1, SizeOf(TWaveHdr));

NetSoundServerForm.Log(nil, 'Thread.Play Buf1');
Playing := True;

repeat
with NetSoundServerForm do begin

if (BufToUse = 1) then begin
FillChar(Buf2, SizeOf(Buf2), 0);

WaveOutPrepareHeader(WaveOut, @WaveHeader2,

SizeOf(TWaveHdr));

WaveOutWrite(WaveOut, @WaveHeader2,

SizeOf(TWaveHdr));

Playing := True;

BufToUse := 2;

end
else begin

FillChar(Buf1, SizeOf(Buf1), 0);

WaveOutPrepareHeader(WaveOut, @WaveHeader1,

SizeOf(TWaveHdr));

WaveOutWrite(WaveOut, @WaveHeader1,

SizeOf(TWaveHdr));

Playing := True;

BufToUse := 1;

end;
while Playing do { nothing. } ;

Log(nil, 'Thread.Play Buf' + IntToStr(BufToUse));
if (BufToUse = 1) then begin

WaveOutUnprepareHeader(WaveOut, @WaveHeader2,

SizeOf(TWaveHdr));

FillChar(Buf2, SizeOf(Buf2), 0);

WaveOutPrepareHeader(WaveOut, @WaveHeader2,

SizeOf(TWaveHdr));

WaveOutWrite(WaveOut, @WaveHeader2,

SizeOf(TWaveHdr));

end
else begin

WaveOutUnprepareHeader(WaveOut, @WaveHeader1,

SizeOf(TWaveHdr));

FillChar(Buf1, SizeOf(Buf1), 0);

WaveOutPrepareHeader(WaveOut, @WaveHeader1,
14 July 1999 Delphi Informant
SizeOf(TWaveHdr));

WaveOutWrite(WaveOut, @WaveHeader1,

SizeOf(TWaveHdr));

end;
end;

until Terminated;

WaveOutReset(WaveOut);

NetSoundServerForm.Log(nil, 'Thread.Terminated');
end;

End Listing Two
Begin Listing Three — TPlayerThread.Execute
procedure TRecorderThread.Execute;

begin
NetSoundClientForm.Log(nil, 'Thread.Record Buf1');
WaveInStart(WaveIn);

WaveInPrepareHeader(WaveIn, @WaveHeader1,

SizeOf(TWaveHdr));

waveInAddBuffer(WaveIn, @WaveHeader1, SizeOf(TWaveHdr));

Recording := True;

repeat
with NetSoundClientForm do begin

if (BufToUse = 1) then begin
FillChar(Buf2, SizeOf(Buf2), 0);

WaveInPrepareHeader(WaveIn, @WaveHeader2,

SizeOf(TWaveHdr));

WaveInAddBuffer(WaveIn, @WaveHeader2,

SizeOf(TWaveHdr));

Recording := True;

BufToUse := 2;

end
else begin

FillChar(Buf1, SizeOf(Buf1), 0);

WaveInPrepareHeader(WaveIn, @WaveHeader1,

SizeOf(TWaveHdr));

WaveInAddBuffer(WaveIn, @WaveHeader1,

SizeOf(TWaveHdr));

Recording := True;

BufToUse := 1;

end;
while Recording do { nothing. };
Log(nil, 'Thread.Record Buf' + IntToStr(BufToUse));
if (BufToUse = 1) then begin

WaveInUnprepareHeader(WaveIn, @WaveHeader2,

SizeOf(TWaveHdr));

SyncBuf := @Buf2;

SyncBufNum := 2;

Synchronize(SendBuffer);

FillChar(Buf2, SizeOf(Buf2), 0);

WaveInPrepareHeader(WaveIn, @WaveHeader2,

SizeOf(TWaveHdr));

WaveInAddBuffer(WaveIn, @WaveHeader2,

SizeOf(TWaveHdr));

end
else begin { Buf1 is now full of data. }

WaveInUnprepareHeader(WaveIn, @WaveHeader1,

SizeOf(TWaveHdr));

SyncBuf := @Buf1;

SyncBufNum := 1;

Synchronize(SendBuffer);

FillChar(Buf1, SizeOf(Buf1), 0);

WaveInPrepareHeader(WaveIn, @WaveHeader1,

SizeOf(TWaveHdr));

WaveInAddBuffer(WaveIn, @WaveHeader1,

SizeOf(TWaveHdr));

end;
end;

until Terminated;

WaveInStop(WaveIn);

WaveInReset(WaveIn);

NetSoundClientForm.Log(nil, 'Thread.Terminated');
end;

End Listing Three

15 July 1999 Delphi Informant

OP Tech
Delphi 1-4 / Bit Manipulation / Database / OOP

By Steve Griffiths
When Every Bit Counts
Compact Storage Using Integer Bitfields

In many situations, a user may be required to select between 0 and n items from a list,
e.g. languages spoken, past illnesses, etc. A ListBox, CheckListBox, or collection of

checkboxes can easily be used to display the selection to the user, but storing the select-
ed items in a database table requires consideration.
It would be simple to provide a Boolean field for
each item in the list, but this approach leads to
wide tables, and wouldn’t allow an end user to add
an item to the list. Alternatively, a child table
could be used to write a record for each item that
was selected. This would work and would allow an
extendable list, but it would require coding to
update the list each time the master record
changes and to save changes to the child table.

A far more compact method is to store a numeric
reference to each selected item in a single integer
field. This article explains the use of a technique
called bit shifting to achieve this, and also details a
data-aware CheckListBox that implements the bit-
shift mechanism.

Bits Broken Down
A four-byte integer contains 32 bits, each of
which can be individually addressed and used as a
switch. This means that with a little trickery, a sin-
gle integer can be used to determine the selection
Figure 1: A demonstration form with a
CheckListBox.
status of up to 31 items. (The reason 31 is the
maximum — and not 32 — is that most databas-
es use a signed integer type, and use the most sig-
nificant bit — bit 31 — to store the sign.) All we
need to do is convert each selected item in the list
to an equivalent bit number in the integer and
turn it on.

Back to Binary
The binary system uses a base of 2, with each bit
representing either 0 or 2 to the power of the bit
position (zero-based). Binary values are read right-
to-left; for example:

binary 110101
= 2^0 + 0 + 2^2 + 0 + 2^4 + 2^5
= 1 + 4 + 16 + 32
= 53

List Indexing
Each item in a StringList (e.g. ListBox1.Items)
has an index value between 0 and the number
of items in the list minus one. To store a refer-
ence to each selected item in single integer, we
need to convert the index value of the item to
the number that sets the equivalent bit in the
integer; selecting items 2 and 5 in the list
should set bits 2 and 5 in the integer. To do
this, we use bit shifting.

One of the Boolean operators provided by
Delphi is shl. This stands for “Shift Left,” and,
when applied, moves each bit of an integer one
step to the left. For example, 53 shl 1 = 106. In
binary representation, 0110101 shl 1 =
1101010. As you can see, each bit has been
moved to the left. To convert an ordinal value to

// If Item is selected, set corresponding Result bit.
function TForm1.GetBitField: Integer;

var
i : Integer;

begin
Result := 0; // Initialize Result.
with CheckListBox1 do

for i := 0 to Items.Count - 1 do
if Checked[i] then

Result := Result or (1 shl i);

end;

Figure 2: Obtaining an integer bitfield from a list.

// For each item, mask its equivalent bit.
// If true (non-zero), set checked true.
procedure TForm1.SetChecks(BitField : Integer);

var
i : Integer;

begin
with CheckListBox1 do

for i := 0 to Items.Count - 1 do
Checked[i] := LongBool(BitField and (1 shl i));

end;

Figure 3: Setting the checked items from a bitfield.

re 4: The second demonstration form.

OP Tech
a bit equivalent, start with 1, and shift it left by the ordinal value,
e.g. 1 shl 4 = 16. In binary representation, 00001 shl 4 = 10000.

Truth in Logic
Since we want to represent more than one item in the integer, we
cannot simply assign the converted index value; this would erase
any previous entry. For our purposes, Delphi provides the or
Boolean operator. When two numbers are or-ed together, the
resulting number will consist of any bit that is set in the first or
second number. For example, 1 or 4 = 5. In binary representation:

0001
or 0100
= 0101

This is not the same as addition. For example, 2 or 2 = 2. In binary:

0010
or 0010
= 0010

By use of the or operator, we are able to iterate the items in a list,
convert the index value of each selected item, and set the equivalent
bit of an integer.

An Example
Figure 1 shows a form with a CheckListBox containing five lan-
guages. The index values are from 0 to 4. Items 0 and 2 have
been selected. In addition to the Items property, the
CheckListBox contains a Checked property, which maintains the
checked status of each item. To assess the checked status of an
item, use the item’s index value. For example, Checked[0] is True;
Checked[1] is False.

The GetBitField function (see Figure 2) will iterate the
Checked list, test each to see if it is checked, and if so, will
update the integer field. Once obtained, the result can be
stored to any integer field in a table.

Getting It Back
To set the item’s Checked property based on the contents of a bit-
field, we must use a technique known as bit masking. Delphi pro-
vides the and operator, which is useful for this purpose. When
two numbers are and-ed together, the resulting number will only
have a bit set if that bit is set in both numbers. For example, 1
and 2 = 0. In binary representation:

1001
and 1010
= 1000 Figu
16 July 1999 Delphi Informant
To set the Checked property of the items in the list, iterate the list
and mask the integer against the bit equivalent of the item’s index
value. The SetChecks function shown in Figure 3 demonstrates
how this works. Most of the work here is done by one statement:

Checked[i] := LongBool(BitField and (1 shl i));

First, 1 is shifted left by the iterator value to give a number that
represents the iterator’s equivalent bit setting. This value is then
and-ed against a bitfield, and the result is cast as a LongBool. A
result of zero (0) is considered False, and a non-zero result is True.
A LongBool is used because a Boolean type only occupies one byte,
and will essentially ignore any bits in the remaining three upper
bytes, whereas a LongBool occupies four bytes and will evaluate the
entire integer. Finally, the Checked property for the item being
referred to by the iterator is set to the resulting Boolean value.

Filtering on a Bitfield
Now that we have a mechanism for representing a selection of items
as an integer, it would be nice if we could filter a DataSet based on
the value of that number. The same Boolean techniques discussed
previously can be used to provide a flexible filtering mechanism.

Figure 4 shows a form containing several components: a DBGrid, a
RadioGroup, a CheckListBox, a Table, and a DataSource. The Table
contains two fields: one for a name, and the other for an integer rep-
resenting the languages spoken by the person. The RadioGroup is
used to select the filter type, and the CheckListBox is used to select
which languages are to be selected by the filter. Notice that the
RadioGroup can be used to display matches for any selected language,
or only those records where the person speaks all selected languages.

The Code
There are four event handlers used to control the filters. Two of these
are used to filter the data, one is used to obtain a bitfield, and the last

OP Tech

// Re-evaluate bitfield whenever a language is checked
// or unchecked.
procedure TForm1.CheckListBox1ClickCheck(Sender: TObject);

var
i : Integer;

begin
with CheckListBox1 do begin

Tag := 0; // Clear Result.
// Iterate list and set checked bits in Tag property.
for i := 0 to Items.Count - 1 do

if Checked[i] then
Tag := Tag or (1 shl i);

end;
// Refresh Filter.
Table1.Filtered := (RadioGroup1.ItemIndex > 0);

end;

Figure 5: The OnClickCheck event handler.

procedure TForm1.RadioGroup1Click(Sender: TObject);

begin
with RadioGroup1 do

case ItemIndex of
// If Filtered is False, the event handler is
// irrelevant as it will not be called.
0: Table1.Filtered := False;

1: begin
Table1.OnFilterRecord := FilterAny;

Table1.Filtered := True;

end;
2: begin

Table1.OnFilterRecord := FilterAll;

Table1.Filtered := True;

end;
end;

end;

Figure 6: Setting the correct filter event handler.
is used to dynamically assign one of the two OnFilterRecord event
handlers to the table. Whenever a language is checked or unchecked,
the OnClickCheck event handler iterates the items list and updates
the Tag property with the new bitfield value (see Figure 5). The
Filtered property of the table is then set to True or False, depending
on the selection in the RadioGroup. This will refresh the table and
update the grid contents to reflect the new selection.

Changing the filter criteria in the RadioGroup will fire its OnClick
event handler (see Figure 6). This handler will assign the appropriate
event handler for the table’s OnFilterRecord event, and set the table’s
Filtered property appropriately.

The FilterAny event handler performs a Boolean and with the bitfield
value contained in the CheckListBox’s Tag property. If the result is
non-zero, at least one of the selected languages is contained in the
table’s Languages field. When cast to a LongBool, this non-zero value
will return True, and the record will be accepted by the filter:

// Accept records containing any of the selected languages.
procedure TForm1.FilterAny(DataSet: TDataSet;

var Accept: Boolean);

begin
Accept := LongBool(CheckListBox1.Tag and

Table1.FieldbyName('Languages').AsInteger);

end;

The FilterAll event handler also performs a Boolean and operation,
but instead of assessing if the result is True or False, the numeric
result is compared with the bitfield value. If the two numbers are
identical, all the selected languages are contained in the Languages
field, and the record is selected:

// Only accept records that contain all selected languages.
procedure TForm1.FilterAll(DataSet: TDataSet;

var Accept: Boolean);

begin
Accept := (CheckListBox1.Tag and

Table1.FieldbyName('Languages').AsInteger =

CheckListBox1.Tag) and (CheckListBox1.Tag > 0);

end;

When writing code, it is often useful to use the Tag property of com-
ponents for storage of arbitrary values, as the storage is essentially free.
However, in this instance, it created a small problem. As the form clos-
es, the OnFilterRecord event was being fired. The two OnFilterRecord
event handlers refer to the Tag property of the CheckListBox. The
CheckListBox had already been destroyed, resulting in an Access
Violation error. A line in the form’s OnCloseQuery event handler solves
17 July 1999 Delphi Informant
the problem by unassigning any OnFilterRecord event handler from the
table. An alternative is to use a variable for the bitfield value:

procedure TForm1.FormCloseQuery(Sender: TObject;

var CanClose: Boolean);

begin
Table1.OnFilterRecord := nil;

end;

Do It Once
The routines we’ve discussed provide a straightforward mechanism
for storing and retrieving an integer representing the selected items
in a list — specifically a CheckListBox, in this example. If we wish
to store this information in a table, there still remains the issue of
calling these functions from the correct event handlers — typically,
a DataSource.OnChange to update the CheckListBox, and a
Table.BeforePost event to save the changes to the table. There is also
the issue of informing the table that the CheckListBox contents
have changed. Adding this small piece of code wherever it’s neces-
sary to store the checked item status can become tedious.

In true Delphi fashion, the cleaner alternative is to create a data-
aware descendant of TCheckListBox that incorporates the previous
routines. This way, the mechanics of storage and keeping the
CheckListBox synchronized with the table can be written once and
used code-free.

TSgDbCheckListBox
The TSgDbCheckListBox component is a descendant of TCheckListBox
that adds DataSource and DataField properties to the standard
TCheckListBox. It contains the functionality to store and retrieve the
selected items status, and, as a nicety, contains a procedure to ensure
the selected DataField is of ftInteger type. (Making a standard compo-
nent data-aware is described in the Delphi developer’s guide and is not
discussed in detail here.)

The DataField selected to store the bitfield must be of type
Integer, and, to track 31 items, it cannot be a Shortint. The
SetDataField procedure calls the CheckFieldType procedure. If the
selected field is not the right type, an EInvalidFieldType excep-
tion is raised. This procedure is also called when the DataSet
becomes active (see Figure 7).

Most of the code is fairly standard for making a component data-
aware. What we need to do is make sure that when the record
changes, the checkmarks reflect the selected items, and that when

OP Tech

type
EInvalidFieldType = class(Exception);

// Ensure selected field is of Type FtInteger; if it is any
// other type, an EInvalidFieldType exception is raised.
procedure TSgDbCheckListBox.CheckFieldType(

const Value: string);
var

FieldType : TFieldType;

begin
if (Value <> '') and

(FDataLink <> nil) and
(FDataLink.DataSet <> nil) and
(FDataLink.DataSet.Active) then

begin
FieldType :=

FDataLink.DataSet.FieldByName(Value).DataType;

if FieldType <> ftInteger then
raise EInvalidFieldType.Create(

'TSgDbCheckListBox.DataField must be of type ftInteger');

end;
end;

Figure 7: Making sure the selected datafield is an integer type.

procedure TSgDbCheckListBox.DataChange(Sender: TObject);

begin
if FDataLink.Field <> nil then

SetCheckMarks;

end;

procedure TSgDbCheckListBox.SetCheckMarks;

var
i : Integer;

begin
FDataLink.OnDataChange := nil;
for i := 0 to Items.Count - 1 do

if (FDataLink.Field.Value and
(1 shl i)) = (1 Shl i) then

Checked[i] := True

else
Checked[i] := False;

FDataLink.OnDataChange := DataChange;

end;

Figure 8: Setting the checkmarks when the data changes.

procedure TSgDbCheckListBox.UpdateData(Sender: TObject);

var
i : Integer;

Value : Integer;

begin
Value := 0;

for i := 0 to Items.Count - 1 do
if Checked[i] then

Value := Value or ((1 shl i));

FDataLink.Field.Value := Value;

end;

Figure 9: Creating a bitfield for storage.

Figure 10: An extended version of the filter demonstration.

18 July 1999 Delphi Informant
the user changes the selection in the CheckListBox, the table is
updated. When a record changes in a DataSet, it fires the
DataSource OnDataChange event, which is relayed to our compo-
nent via the TFieldDataLink. The handler calls the SetCheckMarks
procedure, which updates the checkmarks as described in Figure 8.

The UpdateData event handler is provided for the TFieldDataLink’s
OnUpdateData event. This iterates the items in the CheckListBox to
build the bitfield, and assigns the result to the DataField ’s Value
property (see Figure 9).

Putting It All Together
Figure 10 shows an extended version of the filter demonstration. A
TSgDbCheckListBox component has been placed onto the form. Its
DataSource property is set to DataSource1, and its DataField is set
to the Languages field of the table. The Items property is
initialized to the same list of languages as the language selection
CheckListBox. (In the spirit of reuse, the items were pasted in from
the other CheckListBox.)

When the program is run, the filter section works as before, and now
the SgDbCheckListBox displays the languages spoken by the selected
person. The languages spoken may be edited by checking and un-
checking the selections and posting the record. Notice that the table
automatically goes into edit mode when a selection is changed.

Extending the Component
This component uses a 32-bit integer for storage, and provides storage
for a total of 31 items. Although this is fine for most visual lists, as in
user-interface terms, multiple selection of more than this number of
items in a single control can be a little daunting, and it’s not easy to
display all selected items without having to scroll. However, if more
items are required, the component may be extended by adding a sec-
ond (or third) DataField, and breaking the Items list into groups of 31.
For a truly dynamic storage system, the items should be grouped into a
collection of seven-item groups, with the result for each group being
cast as a char and concatenated into a string for storage to the table.

Another enhancement is the addition of a Lookup Source and
Lookup Field so the list items may be provided from an external table.

Wrapping Up
It’s easy to represent the selected status of multi-selection lists as an
integer, and the techniques described here can be readily adapted to
other list-type classes, both visual and non visual. As always, a little
bit of planning can save a great deal of cutting and pasting. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUL\DI9907SG.

Steve Griffiths has been programming with x-base
languages for over 20 years, switching to Delphi as
his primary development tool from version 1. He is
currently working for NuMedics Inc., writing medical
software with an emphasis on diabetes and disease
management. He can be reached via e-mail at
sgrif@teleport.com.

19 July 1999 Delphi Informant

On the ’Net
XML / XSL / HTML / Delphi 4

By Ron Loewy

<?XML version="

<TForm Name="Fo

Left=50 W

<TLabel Name

Caption

<TPanel name

<TMemo Name

This data

</TMemo>

<TButton Na

<TButton Na

Left=

</TPanel>

</TForm>

Figure 1: One
components.
XML from Delphi
Introducing XML and Using It from a Delphi Application

If you’ve read any computer trade magazines in the last year, you’ve run across
stories about XML, and how it will change the Web and the Internet. This article

provides a short description of what XML is and isn’t, provides some information
about possible uses of XML, and presents a primer to XML document parsing from
Delphi applications.
XML vs. HTML
Many make the false assumption that XML is a
new version of HTML that will replace it as the
language of choice on the Web. The truth is that
XML is a different animal; it uses a syntax resem-
bling HTML, but has a different goal.

HTML (HyperText Markup Language) started as
a markup language for document encoding and
display. The popularity of Mosaic, and Netscape
Navigator after it, accelerated the development of
HTML; it was heavily modified to support display
across the Internet infrastructure. Today’s HTML
is a document display technology that’s proven its
worth on millions of Web pages.

XML (Extensible Markup Language) is a meta-
language — a language used to describe other lan-
guages specific to a narrow domain. Microsoft
used XML to create the Channel Definition
Format (CDF), an XML implementation for the
creation of push sites in Internet Explorer.
Similarly, the Chemical Markup Language (CML)
1.0"?>

rm1" Caption="Hello XML World"

idth=200 Top=50 Height=400>

="Label1" Left=8 Top=12

=" Hello XML World"/>

="Panel1" align=alBottom Top=30>

="Memo1">

will appear in the memo control.

me="OkBtn" Caption="&Ok" Left=100 Width=30/>

me="CancelBtn" Caption="Cancel"

50 Width=30/>

way of using XML to describe a form and its
is an XML implementation specifically for use in
documents that describe chemical structures.

I like to compare HTML and XML using the fol-
lowing description: An HTML document is easy
to read (and create) by humans in its native for-
mat (before being rendered by a browser), but,
because it doesn’t impose structure on a docu-
ment, it’s hard for an application to read and ana-
lyze. On the other hand, an XML document is a
domain-specific description of information that is
easy to read (and create) in its native format by
humans and applications, but has no display char-
acteristics applied to it.

An XML Document
Before continuing our discussion of what XML is,
and what it can be used for, let’s examine an XML
document. Let’s consider an XML document that
describes a Delphi form. One way we might use
XML to describe the form and its components is
shown in Figure 1. In this sample, the form is
described in a hierarchical way. It includes one
label and one panel; this panel is the parent of
two buttons.

As you can see, the syntax of this XML document
resembles an HTML document. We use tags to
describe the different components. In one case, we
have some text encapsulated by the <TMemo>
and </TMemo> tags, and we have attributes for
the tags.

A Well-formed XML Document
An XML document is a hierarchical collection of
elements (tags) and their content. Every XML
document has one root element that must enclose
all other elements in the document. In the exam-
ple in Figure 1, <TForm> is our root element.

On the ’Net
Every element in XML documents must have starting and closing
tags. Between these tags, the document can include other tags
and textual content. Sometimes you don’t need to enclose any
more content in a tag. In this case, you can create an “empty” tag
and use:

<TagName ... attributes ... />

as a shortcut to close it, rather than:

<TagName ... attributes ...></TagName>

Attributes can appear only in the open tag of the element. Every
XML document must start with an XML processing tag:

<?XML version="nnn"?>

A Valid XML Document
A document like the one we used for our sample is a well-formed
XML document, i.e. it follows all the rules we described. XML pro-
vides a more strict definition of a document, called a Valid docu-
ment, which is a document that describes its type by referencing a
domain-specific description called a DTD (Document Type
Definition) and implements the rules of this DTD.

Applications that need to read and process data stored in XML
format use an XML parser. XML parsers come in two flavors:
validating parsers that check the document against a DTD, and
non-validating parsers that ensure the document is well-formed,
but don’t validate it against a DTD.

A DTD is a collection of rules that describes what the root element
of the document must be, what other XML elements can appear in
the document, and what elements can be included in other ele-
ments. For example, an XML document that describes an order will
include elements for the order number, the items purchased in the
order, and customer information. Let’s assume a sample of the cus-
tomer information can look as follows:

<Customer Name="Aharon Green">

<Address>

<Street>1259 NW Pickle Rd.</Street>

<City>Stamform</City>

<State>CT</State>

<Zip>12345</Zip>

</Address>

<Phone>508 765 1234</Phone>

</Customer>

Our DTD can ensure the Street, City, State, and Zip elements
will appear in the Address element, but can’t appear in the
Customer or Phone elements. As a developer, you might think of
a DTD as a COM interface definition, and an XML document
that implements this DTD as a COM object that creates one
instance of it.

When we said earlier that XML is a meta-language used to create
domain-specific markup languages, we were talking about the task of
creating a DTD that describes the structure of documents that store
and describe information specific to our needs. The issue of DTD
creation and manipulation is beyond the scope of a single article
introducing XML. For the purpose of this article, we’ll discuss only
well-formed XML documents, their uses, and how to parse such
documents from a Delphi application.
20 July 1999 Delphi Informant
Other XML Objects
We’ve discussed XML documents as a collection of elements (tags)
that can enclose other tags and raw text. Every tagged object in an
XML document is called an element; raw text is usually referred to
as PCDATA. In addition to these, XML documents can include
comments, non-XML streams, XML “processing” instructions for
the application handling the document, and XML entities (macros
that are expended in the XML stream). The DTD definition has a
syntax of its own, but I’ll try to keep things simple for this article,
and leave the description of DTDs for another time.

Uses for XML
As you may have already noticed, XML allows you to store and describe
information in a hierarchical fashion. We often use a hierarchical
metaphor in applications, from the Windows Explorer to the folders
you use to store your e-mail. We can mimic this hierarchical structure
with master-detail tables in our databases, or store the information in
objects in memory that describe this hierarchical nature of the data.
With XML, we gain a platform-independent standard way to describe
data in a hierarchical fashion, and share it between applications.

Because XML is easy to read and understand by applications, it’s a
perfect method to publish data that needs to be read and manipulat-
ed by different applications. Consider search engines on the Web.
Go to your favorite, and search for a book about Delphi by typing
the query “Delphi+Book.” On one search engine I received 382,780
hits, many of which weren’t related to Delphi or Delphi books. If
the data was searched against a collection of XML documents, the
search engine could only look at data that appears in <Book> tags
for example, and minimize the number of hits returned.

XML data is easy to publish over the Internet and is platform indepen-
dent. If you want to share data with users on Windows, Macs, UNIX
machines, and IBM mainframes, you’re limited to propriety data, or
non-structured data formats. With XML, it’s easy to create applications
on all these platforms (or on the same platform with different develop-
ment tools) that exchange this information. In addition, many XML
language implementations are being created by different organizations
and working groups, so you might be forced to work with XML data
sooner than you expect.

Related Technologies
The world of XML includes several more pieces that make XML usable
in the real world. A short description of the important pieces follows, but
due to space constraints, we won’t explore them in detail in this article.

Displaying XML documents with XSL. XML documents, as we
have seen, are easy to write and read by developers and applica-
tions. However, unlike HTML, you can’t use XML to display the
information in a nicely formatted way in a browser. The solution
to this problem is Extensible Style Language (XSL). An XSL filter
defines a set of rules that convert an XML document to a display
language like HTML. An XSL filter is, in fact, an XML implemen-
tation. By associating an XSL filter with XML documents, you can
define a way to display the information as HTML documents in a
browser (see Figure 2).

Consider a Web application that uses XML data to return queries
over the Internet or an intranet. Because the data is stored in XML
format for easy searching and analysis, you would want to display it
nicely formatted. Usually, an XSL processor that converts the XML
data into an HTML display document using the rules in the XSL
filter document is activated.

Figure 2: An XSL processor combines the XML data with the XSL
filter rules to create a browser-ready HTML document.

On the ’Net

Constant Value Description

XMLELEMTYPE_ELEMENT 0 XML Element
XMLELEMTYPE_TEXT 1 Text
XMLELEMTYPE_COMMENT 2 Comment
XMLELEMTYPE_DOCUMENT 3 Document
XMLELEMTYPE_DTD 4 DTD
XMLELEMTYPE_PI 5 Processing Instruction
XMLELEMTYPE_OTHER 6 Non-XML Data

Figure 4: Supported XML object types.

var
XMLDoc : OleVariant;

RootElement : OleVariant;

...

XMLDoc := CreateOleObject('msxml');

try
XMLDoc.Url := 'd:\path\to\xml\document.xml';

RootElement := XMLDoc.Root;

...

finally
XMLDoc := varNull; // Release the parser.

end;

Figure 3: Encapsulated calls to the XML parser.
Linking XML documents with XLL and Xpointer. In HTML, we
reference one document from another using the <A HREF> tag. We
can also define bookmarks in a document with the <A NAME> tag.
XML doesn’t offer this functionality as a basic part of the language,
but the XML Linking Language and the Xpointer definition are
used to extend XML documents, and provide ways to reference one
document from another.

XLL and Xpointer go even further. They allow you to create multi-
directional links, references to entire subsets of documents, and a
mechanism to traverse the element hierarchy of a document and tar-
get a specific element or subset of elements in a document. For most
applications, XLL and Xpointer aren’t important. However, if your
application requires linking XML documents, look for information
about these technologies.

Things to come. XML is a relatively young technology with a bright
future. It’s understandable that new developments related to XML usage
in the real world will occur as it becomes more popular. Among the
interesting things to notice are the official W3C Document Object
21 July 1999 Delphi Informant
Model (DOM) for XML, which provides a standard way to access the
hierarchy of elements in an XML document from applications; XQL, a
query language for XML data; and XML Islands in HTML documents,
a technique that allows you to embed XML data in HTML documents.

Parsing XML Documents with Delphi
Parsing XML documents requires an XML parser. The options we have
are creating a parser from scratch, purchasing a third-party solution, or
using a “system” tool. I’m not a big believer in the need to invent every
piece of code that goes in my application; I prefer to concentrate on
the logic of my applications, and use as many industry-standard com-
ponents as possible. Fortunately for us, Microsoft’s Internet Explorer
4.0 and later (which is also a part of Windows 98 and the upcoming
Windows 2000) includes an XML parser component.

The file, msxml.dll, that IE installs into your system directory is this
XML parser. The IE4 version is a non-validating parser that doesn’t pro-
vide support to the W3C’s new DOM standard for XML documents.
The new XML parser that will ship with IE5 (in beta at the time of this
writing) has many advantages, including support for the new DOM
standard. However, because it can change by the time IE5 ships, I prefer
to use the IE4 version, which is still supported in the current IE5 beta
(and will most likely continue to be supported when IE5 ships).
Although it doesn’t offer all the bells and whistles of the latest XML
development, it’s still a useful tool that will get you started in a hurry.

Creating Support Files
To keep the code simple, I will use the XML automation object in
this article. Although this won’t be as fast as linking via the vtable, it
will keep the code simple. However, I will use the type library of the
XML parser object to take advantage of the constants it defines.

Locate msxml.dll in the system directory and use Delphi’s tlibimp.exe
tool (in the \Bin directory of your Delphi installation), e.g.:

tlibimp c:\winnt\system32\msxml.dll

My experiments indicate that Delphi 3.02 tlibimp.exe doesn’t create a
correct import Pascal unit. Delphi 4.02 creates an import library that
is usable in both Delphi 3.02 and 4.0x. However, notice that if you
try to import msxml.dll from the first public IE5 beta release, even
Delphi 4’s tlibimp.exe will create an un-compilable import unit.

The results of the import process are the files msxml_tlb.pas and
msxml_tlb.dcr. I moved these files to Delphi’s \Imports subdirectory.

Using the msxml Object
The msxml object is instantiated like other automation objects — via
the CreateOleObject method from Delphi’s ComObj system unit.
Most calls to the XML parser will be encapsulated (see Figure 3).
Notice the way the root element of the document is obtained via the
document’s root element. The object should be capable of accessing
XML documents over HTTP; use a correct URL to access a docu-
ment over the network, or a simple file name to parse a local file.

If you’re interested in more information about the capabilities of the
XML document object created by the parser, refer to the
IXMLDocument2 interface definition in the typelib import unit you
created earlier.

The Hierarchical Element Tree with the msxml Object
The Root element, and every other XML element represented in the
tree created by the parser, has a Children property that returns a col-

procedure TForm1.ParseDocBtnClick(Sender: TObject);

var
XMLDoc : OleVariant;

RootElement : OleVariant;

begin
ElementsBox.Items.Clear;

XMLDoc := CreateOleObject('msxml');

try
if (OpenDialog1.Execute) then begin

ElementsBox.Items.Add(

'Parsing ' + OpenDialog1.FileName);

ElementsBox.Items.Add('');

Caption := 'XML Parser - ' + OpenDialog1.FileName;

XMLDoc.URL := OpenDialog1.FileName;

RootElement := XMLDoc.Root;

WriteElement(RootElement, 0);

end;
finally

XMLDoc := VarNull;

end;
end;

Figure 5: The OnClick event handler for the Parse Document button.

On the ’Net

procedure TForm1.WriteElement;

var
s : string;
t : WideString;

Count, i : Integer;

ChildElement : OleVariant;

eColl : OleVariant;

begin
s := '';

for i := 1 to level do
s := s + ' ';

case AnElement.Type of
XMLELEMTYPE_ELEMENT:

begin
t := AnElement.TagName;

s := s + 'E:' + t;

if (AnElement.Text <> '') then
s := s + ' (' + AnElement.Text + ')';

ElementsBox.Items.Add(s);

eColl := AnElement.Children;

if (assigned(TVarData(eColl).VDispatch)) then begin
Count := eColl.Length;

for i := 0 to Count - 1 do begin
ChildElement := eColl.Item(i, 0);

WriteElement(ChildElement, 1 + level);

end;
end;

end; // XML element.
XMLELEMTYPE_TEXT:

begin
s := s + 'T:';

ElementsBox.Items.Add(s);

end; // Text.
// Check for the other object types.
...

end; // case
end;

Figure 6: The WriteElement procedure.

Figure 7: Part of the Color.CDF sample that ships with the
Internet Client SDK (INetSDK) with minor changes to show special
object handling.

Figure 8: The Color.CDF object tree displayed by our sample
application.
lection of all the objects it encloses. Unfortunately, Microsoft used
the element phrase to describe every object in the XML document
hierarchy — not just XML elements. Although the Children proper-
ty of an XML element object is defined as an ElementCollection
object, it can hold objects like comments, DTD information, text,
etc. The table in Figure 4 indicates the object types supported.

To illustrate the parsing process, I created a simple form with a button to
activate the parser, and a list box that will hold a hierarchical representa-
tion of the parsed XML file. The event handler for the button is shown
in Figure 5. We create the XML parser object and obtain the root ele-
22 July 1999 Delphi Informant
ment as indicated before. The interesting bit of information is the call to
the WriteElement procedure, which has the following declaration:

procedure WriteElement(

AnElement: OleVariant; Level: Integer);

The implementation of this procedure is shown in Figure 6. The
WriteElement code prefixes the object based on its level, determines
the type of the object, and creates the string that will be displayed
in the printed tree.

For an XML element object, get and display the tag name of the ele-
ment (see Figure 7). If there is text enclosed in the element, we display
this text in parentheses, and call WriteElement recursively for every
object in the element’s Children collection property (see Figure 8).
Notice the technique we use to ensure that the collection property
holds a valid automation object. We cast it to TVarData, and check
the VDispatch member to ensure it’s assigned.

Reading Attribute Values with the msxml Object
If you inspect the IXMLElement2 interface in msxml_tlb.pas, you’ll
notice it exposes an Attributes property via the Get_Attributes
method. This property (like the Children property) returns an ele-
ment collection object. Unlike the Children property, the objects
available through this collection are XML Attribute objects (repre-

On the ’Net

Figure 9: The Color.CDF sample displayed with XML element
attribute information.
sented in the code with the IXMLAttribute interface). To parse the
Attributes, we need to add the following code to the WriteElement
procedure for the XMLELEMTYPE_ELEMENT case clause:

aColl := AnElement.Attributes;

if (assigned(TVarData(aColl).vDispatch)) then begin
t := '';

for i := 0 to aColl.Length - 1 do begin
AnAttr := aColl.Item(i, 0);

t := t + ' ' + AnAttr.Name + '="' + AnAttr.Value + '"';

end; // Loop through all the attributes.
if (t <> '') then

s := s + t;

end;

For this example, I also changed the way an XML element is dis-
played in our list box to look like a tag (instead of the E: prefix of
the previous example). If your application knows the attributes
expected for an element, you could use the Attribute property to
gain access to the attribute value directly without iterating through
all the attributes as this sample does.

Other Capabilities of the msxml Object
The msxml object includes other methods and properties you can use if
you want to build the XML document in memory using the hierarchi-
cal object model the object exposes. You can use methods such as the
AddChild, RemoveChild, GetAttribute, SetAttribute, and RemoveAttribute
to change the document. The document’s CreateElement method is
used to create an unconnected object, and the AddChild method of an
element is used to insert it into the hierarchy (see Figure 9).

More information is available on Microsoft’s SiteBuilder Web site in
the Internet Client SDK documentation, and in the code created for
msxml_tlb.pas.

Conclusion
XML is a platform-independent, Internet-ready standard for the cre-
ation of domain-specific markup languages. XML excels at storing
hierarchical information and application-neutral data sharing.
Microsoft, IBM, Sun, and most other software corporations are busy
creating XML tools, documentation, sample code, and definitions for
different uses. XML technology is being developed at a rapid pace,
and the chances are good that, sooner or later, your application will
be able to take advantage of XML data.

This article provides a brief introduction to XML and some of its
related technologies, as well as demonstrates how to use the IE4 XML
23 July 1999 Delphi Informant
parser object from Delphi applications. The XML 1.0 definition and
DOM definition have been released by the W3C. XSL is currently
still in draft mode, and we’ve witnessed a lot of changes between the
first and later drafts. I’ve decided to wait for XSL to mature in the
W3C development process before I invest time in writing or learning
to use an XSL processor.

I recommend getting a good XML book to learn more about XML
document creation, XML applications, and DTDs. As usual, the
Internet is full of good resources; http://www.microsoft.com/xml
includes information about Microsoft’s offerings, which are of interest
to Delphi developers. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\JUL\DI9907RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer
of eAuthor Help, HyperAct’s HTML Help authoring tool. For more information
about HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910, or
visit http://www.hyperact.com.

http://www.microsoft.com/xml
http://www.hyperact.com

24 July 1999 Delphi Informant

On Language
object Type / class Type / Pointers

By Aleksandr Gofen
object vs. class
Fewer Pointers, Less Double Thinking

Delphi classes are hidden pointer variables. This requires special thinking and atten-
tion. This article discusses objects that have nothing to do with pointers, objects

that behave as normal global or local variables in a high-level programming language.
By this I mean objects declared as the “old fash-
ioned” Object Pascal object type. Variables of this
type may be either global/local, or dynamic, i.e.
reside on the heap. What is called the “old” object
calling convention is actually a mechanism of
referring to an object:
SomeObject = object

via a pointer:

SomeObjectPtr = ^SomeObject;

Because of the convention that variables of type
class in Delphi are hidden pointers, this way of
calling the object becomes obsolete, but not the
object type itself. The linear memory model imple-
mented since Windows 95 and NT, together with
the new features of Delphi 2, 3, and 4, leave cases
when the object type provides a better solution.

Pitfalls of the class Type
In general, pointers are in conflict with funda-
mental principles of high-level languages, such as:

the rule of scope, and
one-to-one correspondence between a variable
and its instance (memory image).

Classes and pointers don’t work this way. Not
only do we need to declare and initialize them
like other variables, we also have to take two
additional actions: to create and later destroy
the instances (to allocate and de-allocate the
memory). Thus, although a pointer:

var p: ^T

is visible and exists only within its scope, its
instance p^ (some structure of type T) doesn’t
necessarily exist within this scope, and doesn’t
necessarily disappear outside it. Moreover, it may
happen that several pointers:

var p1, p2, p3: ^T

On Language
point to the same instance of type T, or conversely, there may be
instances of T to which no pointer points at all. Pointers can also point
to a wrong place.

Hidden pointers (type class) are even more peculiar. For objects:

var a, b: TSomeClass

neither the assignment a := b, nor the condition a = b has its
usual mathematical meaning. Instead, special methods, Copy and
Equal, must be designed to perform these functions. In addition:

procedure Any1(x: TSomeClass, ...)

as well as:

procedure Any2(const x: TSomeClass, ...)

can actually change the instance of x, despite the fact that it looks
like it’s called by value.

One more example: imagine that you have to design a new type,
say TMatrix, and operations on values of that type, such as Sum
and Product. Normally, you need to declare:

function Sum(const A, B: TMatrix): TMatrix;

function Product(const A, B: TMatrix): TMatrix;

This allows you to use expressions such as Product(Sum(A, B), C),
but not if TMatrix is a class. Where do the functions and the
implicit variable Result (all of which are pointers) point to? Who is
responsible for creating and destroying the instances of the Result of
these functions? Here it’s better not to bother with functions at all,
but to declare procedures instead and give up the opportunity to
write the previously mentioned expressions:

procedure Sum(const A, B: TMatrix; var C: TMatrix);

procedure Product(const A, B: TMatrix; var C: TMatrix);

Again, because TMatrix is a class, const and var have no usual
meaning and are only used to show the input parameters and the
output in the procedures.

(Note: An undocumented feature of Delphi 2-4 syntax even allows
omitting the carat (^) in pointer expressions, e.g.:

p1^.SomeField or p2^[i, j]

can be replaced with:

p1.SomeField or p2[i, j]

This means that pointers can be hidden not only for classes now;
therefore the provocative confusions between instances and their
pointers are very real.)

This shows that explicit or implicit pointer variables are somehow
unnatural for high-level languages, because they require a sort of
“double-thinking” in the design phase, and can cause even more pain
while debugging. The crucial issue here is to distinguish between log-
ical and technical reasons to use pointer variables. Logically, pointers
are needed in Pascal for designing special data structures such as
linked lists, graphs, etc., which cannot be done in another way.
25 July 1999 Delphi Informant
There are also technical reasons that have influenced programming
style for a decade. Here are at least four such reasons.

One. Memory access limitations for IBM PCs required that no
data structure exceed 64KB. Thus, the stack size was usually
much less, typically 16KB (program size plus stack size could not
exceed 64KB). This limited the space for global and local vari-
ables. Since Delphi 2, this is no longer true. Now the stack size is
controlled by the compiler directive’s minimum stack size
($MINSTACKSIZE, default 16KB), and maximum stack size
($MAXSTACKSIZE, default 1MB). The stack grows incremen-
tally as needed. Thus, memory allocation on the heap is no
longer more efficient than allocation on the stack.

Two. The only way to use upper memory before the advent of 32-
bit operating systems was by using the heap and pointers. Again,
this is no longer true.

Three. For arrays of largely variable size, it was reasonable in
standard Pascal to allocate memory on the heap rather than to
reserve the maximum possible array size (allocated on the stack).
Since the introduction of variant arrays in Delphi 2 and dynamic
arrays in Delphi 4, this reason has become less important.
Variables and fields of these types require the memory according
to their current length (plus overhead), and programmers may
treat them similar to ordinary local or global variables. (Note:
Variant arrays that aren’t “locked” are less efficient, but this only
matters for performance-critical parts of applications.)

The previously mentioned technical reasons are no longer valid, but
the following one still is.

Four. The Visual Component Library (VCL) is based on the
Windows API, which makes heavy use of classes and pointers. Thus,
if users want to build a hierarchy of objects inheriting from the
VCL, these objects must also be of type class, i.e. pointers.

Nevertheless, designing new structures that aren’t descendants of
the VCL, we can find better solutions than using classes. In the
next section, we will describe programming with type object as an
alternative to class.

Where Type object Is Better Than Type class
In the Delphi literature, we cannot find much about type
object except that it’s still supported to be backward-compatible
with Object Pascal. Therefore, we use the syntax given in Object
Pascal before the introduction of Delphi. We can also use proper-
ties. The relationship of type object with type class is such that
a hierarchy based on inheritance from type object cannot mix
with that of class. Nevertheless, fields of object or class may be
of any type.

We are going to use the object type for declaring global or local
variables without using pointers. In practice, we usually want
them to be global, because they don’t lose their values outside
scope. To avoid the clutter of many global variables concentrated
in one place, we are free to design as many units as we logically
need so each unit declares its own global variables.

The biggest advantage of the object type is demonstrated when we
define structures of fixed length at design time. Then there’s no need
to allocate dynamic memory to certain fields and structures.
(Otherwise, the class type would be more appropriate.)

// Defines complex numbers in form a + ib.
TAlgCmplx = object

Re, Im: Extended;

// z.Conj returns the conjugation to z.
procedure Conj;

// z.Init(x,y) means z = x + iy.
procedure Init(const x, y: Extended);

end;

// Defines complex numbers in form r*exp(i*Arg).
TExpCmplx = object

r, Arg: Extended;

// z.Conj returns the conjugation to z.
procedure Conj;

// z.Init(rad, fi) means rad*exp(i*fi).
procedure Init(const rad, fi: Extended);

end;

Figure 1: No need to declare and use constructors and destructors
when designing a hierarchy of objects without virtual methods.

On Language
While designing a hierarchy of objects without virtual methods,
we don’t need to declare and use constructors and destructors.
(Constructors are still needed for virtual object variables, not to
allocate memory to them, but to initialize the virtual call mecha-
nism, i.e. late binding.) See Figure 1 for some examples.

Given the types shown in Figure 1, the following functions perform
operations on complex numbers:

function AlgOper(const z1: TAlgCmplx; const op: Char;

const z2: TAlgCmplx): TAlgCmplx;

function ExpOper(const z1: TExpCmplx; const op: Char;

const z2: TExpCmplx): TExpCmplx;

and functions:

function ExpToAlg(const z: TExpCmplx): TAlgCmplx;

function AlgToExp(const z: TAlgCmplx): TExpCmplx;

transform one format into another. With these functions, it’s easy
to use arithmetic expressions with complex numbers. For exam-
ple, the mathematical expression (z1 - z2)/(z3 + z4) may look like:

AlgOper(AlgOper(z1, '-', z2), '/', AlgOper(z3, '+', z4));

Another example defines an object that provides bit-to-bit access
within one byte:

TBit = [0..1];

T8Bits = object
BitStore: Byte;

function GetBit(const i: Byte): TBit;

procedure PutBit(const i: Byte; const r: TBit);

property Bit[const i: Byte]: TBit

read GetBit write PutBit;

end;

With this definition and:

var s: T8Bits

we can write for example:

s.Bit[3]:= 0;

or

with s do Bit[2] := Bit[1];

(Note: It seems reasonable to specify Bit as a default property in this
example, but all versions of the Delphi compiler up to 4 do not sup-
port the property specifier, default, for the object type.)

The advantages of using type object over type class in the previ-
ous examples are obvious. Besides that the variables of the
defined types may be treated simply as non-pointer variables, the
type T8Bits occupies exactly one byte, not four, as it would if it
were a class. Also, if complex numbers were defined as a class, it
would be impossible to define the operations as functions and to
use them in expressions.

So far, the examples have been rather simple, involving no hierarchy,
inheritance, nor polymorphism. Let’s consider some examples with
all these features.
26 July 1999 Delphi Informant
First, a general note: Given the definitions:

TObj1 = object { some object };
TObj2 = object(TObj1);
TObj3 = object(TObj2);
TCls1 = class { some class };
TCls2 = class(TCls1);
TCls3 = class(TCls2);

the respective variables:

var Obj1: TObj1; Obj2: TObj2; Obj3: TObj3;

Cls1: TCls1; Cls2: TCls2; Cls3: TCls3;

are assignment-compatible from left to right, i.e. pointer Cls1 may
point to instances of any of the types TCls1, TCls2, or TCls3. If all
three class types have a virtual method:

procedure Same(...); virtual;

and a constructor, Create(...), then:
if Cls1 := TCls1.Create(...), Cls1.Same(...) calls the ver-
sion of Same for TCls1;
if Cls1 := TCls2.Create(...), Cls1.Same(...) calls the ver-
sion of Same for TCls2;
if Cls1 := TCls3.Create(...), Cls1.Same(...) calls the ver-
sion of Same for TCls3.

Thus, the variable Cls1 always calls the correct versions of the
method according to the one that created the instance of Cls1 at run
time. This is how polymorphism works for the class type.

In contrast, when we deal with variables of type object directly, it’s
impossible to not know at compile time which of the objects in the
hierarchy calls the method. For example, Obj2.Same(...) calls
exactly the version of the method for the type TObj2. Thus, for the
object type, the usual form of polymorphism never occurs, at least
not with a direct method call.

However, it may happen when one method calls another.
Suppose there is a method belonging only to TObj1, say
TObj1OnlyMethod, and in its body there is a virtual method,
Same (Same may belong to TObj1, TObj2 or TObj3). Then, at
compile time, it cannot be known what version of Same must be

type T3D = array[1..3] of Extended;

T3x3 = array[1..3, 1..3] of Extended;

T3DPoint = object
x: T3D; // 3D vector.
procedure Init(const a: array of Extended);

procedure Apply(var v: T3D); // Just calls Move.
procedure Move(var v: T3D); virtual; // Here it's empty.

end;

// The inherited field x is intended for displacement.
TDisplacement = object(T3DPoint)

constructor Init(const d: array of Extended);

// Applies displacement x to vector v.
procedure Move(var v: T3D); virtual;

end;

TGenTransfrm = object(TDisplacement)
A: T3x3; // Matrix of rotation.
constructor Init(const d, B: array of Extended);

// Applies rotation A and displacement x to vector v.
procedure Move(var v: T3D); virtual;
procedure Prod(const B: T3x3); // A := A*B

end;

var
v: T3D;

Shift: TDisplacement;

GenTrans: TGenTransfrm;

Figure 2: An example of object types.

On Language
called. With that in mind, let us consider the example of object
types shown in Figure 2.

(Note: For virtual methods of object type, the virtual directive
should be used instead of override.) Given these definitions, the
variable v.x represents some point in 3D space, Shift.x is intended
to keep a displacement, and GenTrans represents a general trans-
formation with displacement GenTrans.x and rotation
GenTrans.A. Then, the call Shift.Move(v) performs the displace-
ment of v, the call GenTrans.Move(v) performs the rotation, and
then displacement of v. In these cases, the caller is known at
compile time.

To demonstrate the case when the caller is unknown at compile time,
the ancestor type T3DPoint introduces two dummy methods: Move,
which does nothing; and Apply, which only calls Move. Contrary to
the Move method, there is only one version of Apply, inherited by all
descendants. Thus, Shift.Apply(v) calls TDisplacement.Move(v), and
GenTrans.Apply(v) calls TGenTransfrm.Move(v), i.e. the appropriate
version of the method Move is called in each case. So, polymorphism
can work with the object type, although its usage is more limited.

Finally, a few notes on using a “mixture” of the class type, say
SomeClass, having certain fields of the object type. Such combina-
tion can be useful if no other field of SomeClass is of the class
type. Then, the methods Create and Destroy (inherited from the
VCL’s TObject) will automatically allocate and de-allocate the
right amount of memory, so users don’t need to bother to design
their own Create and Destroy methods to perform these operations
for every field of SomeClass.

Conclusion
Since version 5.5 of Borland’s Turbo Pascal, objects defined as type
object can be referred to directly or via pointers. Direct reference is
still necessary. The object type is a complementary structure to
Delphi’s class type in the sense that class is always a hidden pointer
27 July 1999 Delphi Informant
to the respective object. Both are similar, but because Delphi is still
evolving as a language, there are few differences in syntax, which
will hopefully disappear in the later versions.

The practical advantages of the object type increased due to the lin-
ear memory model, and the potentially unlimited stack implement-
ed in Delphi 2, 3, and 4. The object type provides better and safer
solutions in situations where developers need structures of a short
length, or structures of a long fixed length, or of a long length that
varies only in a narrow range.

I wish to express my deep appreciation to Dr Manfred Mackeben,
who helped to essentially improve this text. ∆

Aleksandr Gofen is a programmer at the Smith-Kettlewell Eye Research Institute
in San Francisco, where he has worked for the last three years. Previously, he
was a Senior Researcher for the Institute of Computer Science (Academy of
Sciences, Russia) and Hydro-Meteorological Center in Moscow, Russia. Gofen has
been developing scientific applications in all versions of Delphi and Inprise’s
Pascal, varying from the Numeric Weather Forecast and the Taylor Solver, to the
Macula Mapping Test (Eye Research Institute). He can be reached via phone at
(415) 561-1644 or e-mail at galex@skivs.ski.org.

28 July 1999 Delphi Informant

New & Used

By Warren Rachele

Figure 1: De
exclusion of
dtSearch
The Search Is Over

The volume of data being stored in electronic format today is unimaginable, and
growing every second. Every fact or half-truth you would ever want to know is stored

somewhere. The trouble, as demonstrated on a minor scale by our own untidy hard
drives, is finding those facts. Sifting through collections of documents and files with such
intriguing names as Document13.doc or weasels.zip to find the name of one of David
Horowitz’ “fellow travelers” is a time-consuming and sometimes fruitless process.
fi
sp
To the rescue comes dtSearch by DT Software,
Inc. dtSearch is a blindingly fast text search and
retrieval product, currently shipping version 5.1.
This tool will build indexes of the files on your
storage medium, then allow you to build complex
search requests that operate against the index files
rather than the source files themselves. The results
are amazing. Complicated Boolean or natural lan-
guage requests are answered in seconds, showing
the source document contents with the location of
the matching data highlighted.

In addition to the dtSearch end-user product, DT
Software also markets the core of their software in
the form of the dtSearch Text Retrieval Engine.
This is a DLL-based product with APIs for
ning the contents of the index by inclusion or
ecific file types.
Delphi, C/C++, and Visual Basic. The engine can
be incorporated, royalty-free, into your software to
provide the same functionality offered by the
dtSearch product.

dtSearch
To appreciate the dtSearch engine’s capabilities,
the vendor recommends using the dtSearch tool
itself. The recipient of numerous flattering reviews
since its original release in 1991, this search tool
has continued to expand and refine its capabilities.
The product is eye-blink fast in seeking out
instances of specified text. It uses one or more
indexes based upon the contents of the documents
you want to search to find and highlight the
instances of the search request, displaying the doc-
uments for you if desired.

Putting the product to use couldn’t be simpler.
dtSearch requires an index to perform its search-
es, so this is where you must start. Building an
index is straightforward. After naming the index
and electing to add files to it, the window
shown in Figure 1 is displayed. This dialog box
is used to define the contents of the index by
the inclusion or exclusion of specific file types.
The user has the option of indexing specific files
by placing discrete file names in the What to

index list, or creating more general indexes by
specifying entire directories of documents to be
included. Every file, including ZIP, HTML,
PDF, and major word processor, spreadsheet,
and database files can be indexed directly by
dtSearch, giving you enormous flexibility in

New & Used
your use of the product. A default list of excluded file types is
displayed in the lower right and can be modified at any time.

Once initiated, the indexing process is fast. The test directory
included the manuscript for a 500-page book and a special zip
file that contained the same files. dtSearch completed this task in
a few seconds and awaited my search request. The document
index that’s created is a database containing the locations of the
words in the documents that were selected. The index doesn’t
include noise words such as “but” and “if.” Memory requirement
for the index-building process is disk space about equal to that of
all the documents to be indexed while the indexing process is
running. Once completed, this temporary storage is released, and
the resultant index is about one quarter of the size of the total
document space.

The indexes created are infinitely manageable, and dtSearch provides
a suite of utilities to perform these functions. All indices can be
updated and modified at will, and can be merged to the advantage
of the search processes. A library manager is provided for network
installations to manage the sharing of index files.

Searching for text is the reason that dtSearch exists, and it excels at
this task. dtSearch performs combinations of Boolean, proximity,
numeric range, soundex, etc. shaped search requests alone or in tan-
dem. The program supports concept searching, a method that uti-
lizes a thesaurus to show hits based on synonyms to the words select-
ed, and user-adjustable fuzzy searching to locate words even if they’re
misspelled in the source documents. Natural language searching is
also a feature of the dtSearch software, allowing the user to develop
query-by-example searches.

To initiate a simple search, the user selects Search from the menu
and is presented with the dialog box shown in Figure 2. Selecting
the index or indexes to be used, a list of cataloged words paired
with the number of occurrences is displayed from that index.
Typing a single word into the Search request field and clicking the
Search button is the simplest form of a search. The search is per-
formed, and a list scheduling the documents in which the word
29 July 1999 Delphi Informant

Figure 2: Type one word into Search request and click the
Search button for the simplest search.
appears is displayed, matched by a representation of the first doc-
ument in that list having each of the occurrences highlighted. By
default, you’ll quickly notice the Stemming feature has located
additional variants of the word you requested. For example, a
search on the word “Sort” also located “Sorts,” “Sorted,” and
“Sorting.”

Extensive search options are available to the dtSearch user.
Searching is not limited to utilizing the indexes only; files can be
Boolean-searched without the benefit of the index. In addition,
the file set can be limited by file name, date, or size. These
options are applicable whether you select a Boolean, or a natural
language search. The simple search detailed in the previous para-
graph is easily expanded using the Boolean operators AND, OR,
or NOT, and providing a second operand. There is no limit to
the number of connected conditions that can be used in a search
statement, which can also be expanded to include proximity qual-
ifiers. Proximity measures the distance, indicated in words,
between the indicated word and a specified marker in the file,
such as the first or last word of the document. Natural language
searching builds search requests from combinations of words,
phrases, or sentences. An unstructured search request ignores
Boolean operators and interprets the statement in a more natural
manner. The returned documents are ranked by their relativity to
the request.

dtSearch doesn’t stop with the search capabilities, but offers equally
extensive display options for the search results. The “hit list” and
matching documents can be viewed in a split window or separate
windows altogether. The documents can be printed and formatted,
and text cut and moved to other documents, making this tool some-
thing text workers will find they can’t do without.

dtSearch Web
dtSearch Web is an ISAPI-based Internet search engine based on
the dtSearch tool. Offering multiple search options, dtSearch
Web makes it a simple process for a Webmaster to quickly add
instant text search options to any NT-based Internet or intranet
site. The match results are displayed in the user’s browser, includ-
ing marked hits inside the HTML documents. dtSearch Web
adds “hit” navigation to the browser display. A link at the top of
the document gives the user access to the first hit; clicking the
highlight markings before and after each hit takes the user to the
next or previous hit in the Web page. If the original document in
which dtSearch locates the specified text is not in HTML format,
dtSearch will automatically convert the native text into HTML.

The dtSearch Text Retrieval Engine
The dtSearch Text Retrieval Engine allows the developer to incor-
porate all the features discussed in connection with the dtSearch
end-user product into their own Delphi applications. The engine
API allows the product to be extended to support proprietary file
formats, allows your application to supply text directly to the
engine for indexing non-file data, allows the engine to perform
in-memory searches, and supports multi-threaded searching.

Using all this power is not a trivial matter, however. Integrating
the dtSearch Text Retrieval Engine is not a simple matter of
dropping a component onto your project and setting a few prop-
erties. You’ll have to code all the functionality you need, and link
it back to the API. This is where usage becomes tough, as the
documentation is somewhat bereft of examples for the Delphi
programmer. There’s an excellent sample application you can use,

procedure TForm1.FormCreate(Sender: TObject);

var
initInfo : dtsInitInfo;

debuglog : array[0..FilenameLen] of Byte;

reply : Word;

currDir : string;
begin

StrPcopy(@debuglog,'dtsearch.log');

_dtssDebugLogEx(@debuglog, dtsLogCommit);

Init_dtsInitInfo(initInfo);

GetDir(0, currDir);

StrPCopy(@initInfo.PrivateDir, currDir);

initInfo.pShowErrorFn := @ReceiveMessage;

initInfo.pShowInfoFn := @ReceiveMessage;

initInfo.pAskYesNoFn := @ReceiveQuestion;

_dtssDoInit(initinfo, reply);

if (reply <> 0) then
begin

MessageDlg('Errorcode from dtsDoInit is ' +

IntToStr(initInfo.errorcode) +

', failure to init.', mtError, [mbOk], 0);

Close;

end
else

MessageDlg('Engine initialized', mtInformation,

[mbOk], 0);

end;

Figure 3: An example of the programming required to integrate
the dtSearch engine into your program.

New & Used

Figure 4: As shown in this demonstration, the indexing functions
return real-time status messages during the process.
but you’re required to dig deeply into the included text files to
locate basic information needed to get started. For example, to
determine that you must include the DTSearch.pas file with your
program’s units, you would need to dig into the
reame_dtengine.txt file.

Using the engine is separated into four steps when integrated into
your program (dtSearch maps an API function call to each):
1) Initialize the engine with dtssDoInit.
2) Create an index of the documents with dtssDoIndexJob.
3) Perform the search request with dtssDoSearchJob.
4) Close the engine with dtssDoShutDown.

Before diving into the code, the Delphi programmer must be fluent
in addressing DLLs written in C/C++ through their native interface.
Though the structures you’ll be addressing are defined in
DTSearch.pas, many of them require pointers to functions and
objects. You must understand the referencing and dereferencing of
pointers to successfully use this product.

An example of the programming required to integrate the
dtSearch engine into your program is shown in Figure 3. This
procedure is the initialization phase of the process, and starts by
defining and allocating a debugging log. The dtsInitInfo structure
is initialized and filled with the appropriate values before calling
the initialization function. This structure is passed to the func-
tion to supply information to the search engine about the direc-
tories to be used when indexing and searching, and to provide
the names of the functions to call to display error messages. Note
that the callback functions, such as those assigned to
30 July 1999 Delphi Informant
pShowErrorFn, pShowInfoFn, and pAskYesNoFn, must be declared
as cdecl.

As with the end-user product, an index must be created before
issuing the search requests. Incorporating this functionality into
your program follows much the same path as the initialization
process; initialize the appropriate structure, input the values
needed to specify the process, and issue the function call to cre-
ate the index. As illustrated in the demonstration program shown
in Figure 4, the indexing functions return real-time status mes-
sages during the process. A callback function retrieves and dis-
plays those messages to the user. All the indexing options avail-
able in the end-user product are exposed through the engine. The
options are set through the members of a structure — dtsOptions
— and set or retrieved by calls to dtssSetOptions or
dtssGetOptions.

All this activity is merely set up for the main course: the search-
ing capabilities. The simple steps required for a search request are
to specify the index or indexes to be used, define a search
request, and let it go. Providing a container for the results allows
the user to immediately see the results of their search. The para-
meters for the search are defined into the dtsSearchJob structure,
just as they are in all other dtSearch tasks. In the Seeker applica-
tion, the results are directed to an external file that is later read
to fill the results listbox. It’s important to remember that the
results are returned in the form of a number of hits and the file
names in which those hits reside. This process doesn’t manipulate
the source files.

The files containing the matches can be displayed in HTML format
by using the function dtssConvertFile. When this function is run, it
will insert hit markers around the located text and add header and
footer markers to the file. These facilitate the navigation of the doc-
ument in a Web browser or other HTML display tool. This conver-
sion process doesn’t affect the underlying file; it creates a new file for
display purposes.

Usage Notes
There is a price to be paid for all this unbridled power. To use
the dtSearch Text Retrieval Engine in your application can be
quite a challenge. This is a complicated product with a non-
Delphi interface, and you must be prepared to spend the time

New & Used
necessary to understand the
requirements of the integration.
Because of the pointer references
used extensively throughout the
functions and structures, the use of
the engine will not be as straight-
forward as a component-based
implementation. (Note: DT
Software might welcome the devel-
opment of a component wrapper
for these functions.)

The documentation consists of two
wire-bound manuals: one for the
end-user aspects of the products, and
a 168-page Programmer’s Reference.
The dtSearch manual tops out at 63
pages, covering everything from the
installation of the product to the
scanning of documents, and the
addition of batch commands for
indexing and searching. It would
benefit greatly from a rewrite. The
material doesn’t seem to fit together

logically, and I found myself skipping around the manual quite a bit.
A number of topics could also benefit from some expansion; many
of the items that I was able to locate had terse descriptions at best.

The Programmer’s Reference is to the point and brief — almost too
brief. It needs more examples in languages other than C/C++ to
get the users of those languages off to a faster start. I wouldn’t have

The searching capabilities of dtSearch
and the dtSearch Text Retrieval Engine
are nothing short of astounding.
Complicated Boolean or natural lan-
guage requests are answered in sec-
onds, showing the source document
contents with the location of the
matching data. However, there is a
price to be paid for all this unbridled
power; this is a complicated product
with a non-Delphi interface, and you
must be prepared to spend time under-
standing the integration requirements.

DT Software, Inc.
2101 Crystal Plaza Arcade, Suite 231
Arlington, VA 22202

Phone: (800) IT-FINDS or (703) 413-3670
E-Mail: sales@dtsearch.com
Web Site: http://www.dtsearch.com
Price: dtSearch, US$199; dtSearch
Text Retrieval Engine, US$999.
31 July 1999 Delphi Informant
been able to implement the product without the sample files, but
this approach leaves a number of questions unanswered. Further
study of the DTSearch.pas and experimentation would have made
some of the functionality clearer, but is this a reasonable expecta-
tion of your tool users? Many programmers will purchase a pack-
age of components or tools hoping to have an immediate impact
on their projects. Asking them to invest an inordinate amount of
time in understanding your interface might be enough to rein in
the popularity of a package.

Conclusion
The searching capabilities of the dtSearch product and, by extension,
the dtSearch Text Retrieval Engine, are nothing short of astounding.
Their search algorithms, in combination with a proprietary index
format, allow colossal amounts of text to be managed quickly and
efficiently. The DT Software Web site lists a number of commercial
products that have integrated the engine into their code to the user’s
benefit. If your text management needs dictate a search product,
dtSearch is an excellent choice, and the dtSearch Text Retrieval
Engine is an equally excellent choice if your next project requires
these functions. ∆

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO soft-
ware development company specializing in database-management software.
The company has served its customers since 1987. Warren also teaches pro-
gramming, hardware architecture, and database management at the college
level. He can be reached by e-mail at wrachele@earthlink.net.

http://www.dtsearch.com

Ready-to-Run Delphi 3.0 Algorithms

TextFile
Many books aimed at programming using
modern visual development tools have left
the fundamentals of algorithm design and
selection behind. New programmers enter
the field with the impression that complete,
commercial programs can be simply assem-
bled from various components. While this
might be true in some limited circum-
stances, it’s hardly a realistic basis for large-
scale development. Rod Stephens’ Ready-to-
Run Delphi 3.0 Algorithms comes to the res-
cue. This book is packed with 398 pages of
fundamental and advanced information
about the core of programming: algorithm
design and data-structure construction.

First, ignore the title! Unfortunately titled
in 1998 with version number 3, Ready-to-
Run Delphi is a book for the ages. Rod
Stephens’ work belongs on any program-
mer’s shelf alongside that of Donald
Knuth, Al Stevens, and Herb Schildt. As
readers of this magazine are aware,
Stephens has provided lucid and informa-
tive explanations of implementing funda-
mental and complex algorithms in maga-
zine-length works. This book allows him
to expand these thoughts and provides an
invaluable learning and reference tool.

A publishing decision labeled this book with
the 3.0 moniker in the age of version 4 and
the upcoming version 5 of Delphi, but it
makes little difference to the content. The
only segment of the book that’s affected by
the version change is the five pages devoted
to resizing arrays, a feature supported native-
ly by version 4. The rest of the book is filled
with the kind of information normally
taught in computer science. This book has
nothing to do with the interface or compo-
nents of a program, and everything to do
32 July 1999 Delphi Informant
with the development of the fundamental
building blocks that should be a part of
every programmer’s repertoire.

This isn’t a book that needs to be
approached chapter by chapter. After
absorbing the algorithm analysis material in
Chapter 1 and the list algorithms in
Chapter 2, you can go where your interests
lead you. Because the list data structure is
fundamental to so many other, more com-
plex structures in programming, it’s impor-
tant that you understand this material well.
Chapter 2 also gives the reader a good
introduction to the author’s style and
approach. In a concise 27 pages, Stephens
provides an understandable and exception-
ally readable presentation on the various
forms of the list, from the simple array to a
threaded, doubly linked list.

These topics sometimes occupy over 100
pages in a computer science textbook with
loftier ambitions than simply informing the
programmer and teaching the subject.
However, the fast approach makes some
important assumptions regarding pointers
that the beginning or intermediate pro-
grammer might find troubling. When the
caret suddenly appears in the code examples
and the linked list structure is introduced
with its next-item pointers, readers might
find themselves in uncharted territory.
Unfortunately, there is no safety net here;
the author assumes you have knowledge on
this subject or will gain it elsewhere.

Ready-to-Run Delphi provides thorough dis-
cussions of nearly every process and struc-
ture a programmer could ever need. Readers
will encounter quick-but-complete discus-
sions on the data structures that should be a
part of every programmer’s kit. Chapters
cover stacks and queues, arrays, trees, bal-
anced trees, and decision trees. The various
flavors of each are discussed and contrasted
within each chapter. With study, you will
easily grasp the pros and cons of each struc-
ture and be able to choose those appropriate
for your next project.

Rather than a simple accessory, the CD-
ROM included with this book is critical to
the reader’s understanding of the material.
The code in the book, the focus of the
material, is presented only in snippet form.
To fully cement your understanding of the
concepts, it’s a good idea to load each
applicable project into Delphi to place the
snippets in context within the larger project.
The projects themselves are excellent presen-
tations. Stephens didn’t create contrived
examples. Rather, the sample programs are
wholly focused on the concept being
explained. He takes the examples one step
further when presenting concepts that lend
themselves well to comparison, such as sort-
ing. One of the projects for the chapter dis-

TextFile
cussing sorting includes a number of alter-
nate sorting algorithms and approaches.
When this program is run, the reader can
see directly the comparative differences in
sorting efficiency between the various
designs. This approach makes the differences
much easier to distinguish than individual
demonstrations of the algorithms.

Unfortunately, the author occasionally suc-
cumbs to the temptation to produce a sam-
ple program that shows what can be done
with the language, but doesn’t lend itself to
developing the readers’ understanding of the
topic. An example of this miscue is found in
the chapter on recursion. Stephens selects
the presentation of Hilbert and Sierpinski
curves to discuss the use of recursion. While
the purpose of including these demonstra-
tions falls within the context of deciding
whether recursion is appropriate, their
innate complexity complicates the decision.
Ready-to-Run Delphi matches the abun-
dance of material dealing with data struc-
33 July 1999 Delphi Informant
tures with a number of chapters discussing
the various fundamental processes that a
programmer will need. Topics include
recursion, sorting, searching, and hashing.
Each of the chapters is as successful as the
structure chapters. The layout of the chap-
ters follows the established approach of
concisely explaining the numerous options
available, when and where they’re best
used, and the pros and cons of each.

The book concludes with a solid presenta-
tion of object-oriented techniques that starts
well, but doesn’t pack the punch of the
other material. The material is presented in
a clear and straightforward manner, but
tends to trail off just as it gets started.
Stephens gives clear explanations of object-
oriented vocabulary, such as encapsulation
and polymorphism. What’s lacking is an
expansion of the ideas with examples that
would really cement the concepts.
If you’re a programmer who wants to go
beyond the assembly of components and the
setting of properties, Ready-to-Run Delphi
3.0 Algorithms will start you down the path
to developing your core programming skills.
Rod Stephens is an excellent writer with a
to-the-point style that makes his work easy
to read and understand. Long after you’ve
read this work, you’ll find yourself drawn to
it when a sticky development situation rears
its head.

— Warren Rachele

Ready-to-Run Delphi 3.0 Algorithms by
Rod Stephens, John Wiley & Sons, Inc.,
605 Third Ave., New York, NY 10158,
(212) 850-6011, http://www.wiley.com.

ISBN: 0-471-25400-2
Price: US$49.99
398 Pages, CD-ROM

http://www.wiley.com

File | New
Directions / Commentary
An Interview with Eagle Software’s Mark Miller

Mark Miller is President of Eagle Software (http://www.eagle-software.com), an independent producer of Delphi
tools. In that role he has been the chief architect of its products, including the Component Development Kit

(CDK), reAct, and CodeRush (formerly code-named Raptor). Mr Miller is also a frequent and popular speaker at inter-
national developer conferences and user groups.
DI: What are the advantages and disadvantages of being an inde-
pendent developer?

Miller: The disadvantage is that your job security is directly propor-
tional to the market. The advantage is that I am able to pursue my
passion — developing tools — with intense focus and speed.

DI: What advice would you give the developer starting out who
wants to develop tools for other programmers?

Miller: I assume you mean the developer wants to make a living at
this, right?

DI: Yes, primarily developing tools as the main source of livelihood.

Miller: Pick a niche area that isn’t covered well. You don’t want to
pour your heart and soul into a product only to find someone in
another part of the world is giving away something that is essentially
the same. We’ve already canceled two products that were in develop-
ment because of this.

Be prepared for a gradual start. At least, that’s how it was for us.
When we placed our first ads for CDK, my estimates were really
high. I was expecting 30 orders the next day (I think we got three).
Although the CDK 1.0 was an excellent product, Delphi was new
and most developers thought of component development as an
advanced topic that was slightly out of reach. As time progressed and
word spread about the CDK, our sales increased.

Make something that people will talk about — something really
amazing or really useful. Then developers will talk about it, and help
you get the word out about your product. Make a product that is of
extremely high quality. Developers are finicky, and each developer
has his or her own individual high standards of quality. Pleasing
developers is much harder than pleasing general consumers.
34 July 1999 Delphi Informant
Make a product that’s simple and easy to use. Include as much assis-
tance for the user wherever you can. At the translation company, the
translation product we created had many complex features, and it
was often in the hands of technically challenged managers. As a
result, the average tech support call lasted about 15-20 minutes,
with a few running several hours. This was extremely expensive (of
course, so was our product so everything evened out). When creat-
ing the CDK, I swore this would not be the case.

To reduce support calls, I added a feature called “Mr. CDK”,
which is essentially an agent that watches activity in the CDK,
and alerts users of any potential problems. Although the Mr.
CDK agent was not animated (he was a static cartoon drawing of
a developer), he was in a shipping product at least a year before
Microsoft put the infamous paper clip in Office. On every page
of the CDK we added “I need more help” buttons, and the CDK
was complemented with an extensive online help file and manual,
that covered not only the basics of using the CDK, but took both
novice and expert developers through the several advanced com-
ponent building issues. As a result of all of this work, tech sup-
port on the CDK was, and continues to be, extremely low. We
consider all of this effort a success.

DI: Delphi is clearly at the center of your programming universe.
What do you consider its most important strength? And without
giving away any trade secrets about Delphi tools you might be
planning, what is the one area of Delphi you feel needs to be
improved the most?

Miller: Delphi’s greatest strength is its RTTI, its component archi-
tecture (especially TComponent and TForm), and the fact that
Delphi is built with Delphi. All of these things combine to allow
us to get under the sheets with Delphi, enhancing it in just about
any way we see fit. It’s impossible to get the same kind of integra-
tion with Visual C++ or any other IDE.

http://www.eagle-software.com

File I New
As far as improvement, most are things that we can do. However,
there are a few things that the Borland R&D team could do in
improving the Tools API that would make some amazing things pos-
sible. Additionally, I would like them to add the concept of an
“AutoVar” to the language. Any variable declared in the “AutoVar”
section of a method is automatically created and destroyed (in
appropriate try/finally blocks) within the scope of the method. The
compiler would invisibly implement the creation and try/finally/free
code. I would also like to see packages enhanced to allow the con-
cept of interface and implementation applied to their list of con-
tained units. This could solve a lot of distribution problems associat-
ed with packages. Other than that, I would like to see a version of
Delphi that supported Linux.

DI: Often I see discussions on the Internet about Inprise in general
and Delphi, focusing on the direction in which this company is
moving and the implications for its flagship product. Could you
share some of your observations and views? What will the future
hold for Delphi?

Miller: I think the Inprise/Borland.com split is the best decision
they’ve made in years. At every Borland conference I’ve been to, the
keynotes heavily focused on what Borland was doing for the enter-
prise. As a developer, I felt they were completely missing the point;
I don’t care about those things. I just care about how productive I
can be in their environment. I think that’s what other developers
care about as well, even developers working at the enterprise level.
Everybody wants to reduce expense and time to market.

As far as the future of Delphi is concerned, that’s hard to tell right
now. For Delphi to succeed and survive in the long term (10+
years), it has to continue to be significantly better than the alterna-
tives. When I say “better” I mean that teams using it must consis-
tently deliver products faster, on spec, at a lower cost, and with
lower long-term maintenance costs than teams using Visual Basic,
C++, or Java. Right now that’s the case, and management is realiz-
ing that, but for Delphi to survive this must continue to be the
case. Additionally, either Delphi must evolve to support other plat-
forms, or Windows must continue to be the dominant platform.

DI: Windows is very popular right now as a computing environ-
ment, particularly in the home computing market. Do you see any
indications this will change?

Miller: I see some small indications in the form of Linux and Java,
but I don’t believe we’ve really seen Microsoft’s full response yet. You
have to remember that Microsoft is a company with a lot of cash,
employing a large number of very smart people. With those
resources, they should be able to continue to dominate the market
for quite some time — seven to 10 years at least.

DI: What do you feel was your biggest challenge as a developer?

Miller: Getting CodeRush 4 to do what is does inside Delphi 4
is pretty challenging. It’s like writing an application where you
don’t have half the code. If there’s a bug in the half you don’t
have, you have to somehow fix it or implement a work-around in
the other half.

Delphi 4 introduced a few architectural changes that presented
major roadblocks into porting CodeRush 3 technology across.
For one of these issues (dockable forms), we had to create a
descendant to a class that we had no source code to, and we had
35 July 1999 Delphi Informant
to do this at run time. Just to be clear, I’m not talking about cre-
ating an object dynamically; I’m talking about creating a new
class dynamically. We had to override methods in this new class,
and then pass an instance of it to a registration procedure located
somewhere in a Delphi unit to which we did not have the
source. Finding the solution involved a great deal of failed
attempts and dead ends before we ultimately got it right, but the
result is pretty impressive. Users can now create true Delphi
dockable forms containing whatever they want in a matter of
minutes. Delphi believes the forms are its own, so persistence
and streaming to the desktop file are built in.

DI: What’s the most exciting project you are working on right now?

Miller: Without a doubt it’s CodeRush. CodeRush represents my
vision of the future of programming. It’s what programming envi-
ronments will be like for everyone four to five years from now. I’m
extremely excited about high-speed coding, and I know that Delphi
plus the appropriate third-party tools is unbeatable in terms of pro-
ductivity. Nothing else comes half as close.

I’m so confident of this that I openly challenge any team of up to
10 VB, C++, or Java programmers against a team of only three
Delphi programmers in a high-speed programming duel to the
death. I figure we could do one of those 24-hour caged events on
pay-per-view, where four teams walk in and only one walks out.
Winners would be judged on architecture, execution speed, user
interface design, and projected ease of maintenance. Even out-
numbered, we’d stomp all over the other teams so much it would
be embarrassing. (Tissues would be freely available to all non-
Delphi programmers in attendance who will no doubt be crying
at the end.) It would definitely be an eye-opener for anyone who’s
never seen high-speed programming in action. I’ve actually tried
to get the Software Development conference folks to allow Delphi
into their annual C++ Super Bowl competition, but they’ve
denied my requests twice.

DI: Having seen you in action, doing live coding in your presen-
tations at conferences, I have no doubt you’d be hard to beat.
Mark, on behalf of Delphi Informant, its readers, and the Delphi
community, thank you for agreeing to do this, and for your
thoughtful and candid responses. ∆

— Alan C. Moore, Ph.D.

Note: This is an abridged version (approximately half) of the interview.
The complete interview is available at the Informant Web site:
http://www.informant.com.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	SkyLine Tools Announces DICOM Suite for Delphi
	Xenomorph Announces COM Interface for Xenomorph System
	Cocolsoft Announces Cocolsoft Delphi Grammar
	Dart Announces ASP Support in MailBuilder
	Active+ Announces ServiceKeeper for Windows NT
	ModelMaker Releases ModelMaker 5 for Delphi
	Innoview Announces MULTILIZER Supports Euro
	Idyle Launches DirectUpdate 1.0
	Primoz Gabrijelcic Announces GpProfile 1.2

	Delphi News
	PrimeCare Uses InterBase to Reduce Healthcare Costs
	Inprise Names Dale Fuller Interim President and CEO
	OFUSA Uses InterBase in Internet-based System
	Borland Announces Borland JBuilder 3

	On the Cover
	Changes Made by Another User
	How It Works
	AutoNumber Fields
	Using ODBC
	Working with an Access Database
	Conclusion
	Begin Listing One — TdgReadTableBeforeWrite

	Sound + Vision
	The Server
	Connecting Using TCP
	The TPlayerThreadClass
	Accessing Low-level Wave Output Devices
	The Client
	Recording Audio
	A Test Drive
	Conclusion
	Begin Listing One - TNetSoundServerForm.TCPDataArrival
	Begin Listing Two — TPlayerThread.Execute
	Begin Listing Three — TPlayerThread.Execute

	OP Tech
	Bits Broken Down
	Back to Binary
	List Indexing
	Truth in Logic
	An Example
	Getting It Back
	Filtering on a Bitfield
	The Code
	Do It Once
	TSgDbCheckListBox
	Putting It All Together
	Extending the Component
	Wrapping Up

	On the 'Net
	XML vs. HTML
	An XML Document
	A Well-formed XML Document
	A Valid XML Document
	Other XML Objects
	Uses for XML
	Related Technologies
	Parsing XML Documents with Delphi
	Creating Support Files
	Using the msxml Object
	The Hierarchical Element Tree with the msxml Object
	Reading Attribute Values with the msxml Object
	Other Capabilities of the msxml Object
	Conclusion

	On Language
	Pitfalls of the class Type
	Where Type object Is Better Than Type class
	Conclusion

	New & Used
	dtSearch
	dtSearch Web
	The dtSearch Text Retrieval Engine
	Usage Notes
	Conclusion

	TextFile
	File I New

